This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258371 #38 Nov 30 2016 22:04:36 %S A258371 1,2,4,3,54,27,4,408,1152,256,5,2500,22500,25000,3125,6,13830,315900, %T A258371 988200,583200,46656,7,72030,3709545,25882780,40588905,14823774, %U A258371 823543,8,360304,39024384,535754240,1766195200,1657012224,411041792,16777216 %N A258371 Triangle read by rows: T(n,k) is number of ways of arranging n indistinguishable points on an n X n square grid such that k rows contain at least one point. %C A258371 Row sums give A014062, n >= 1. %C A258371 Leading diagonal is A000312, n >= 1. %C A258371 The triangle t(n,k) = T(n,k)/binomial(n,k) gives the number of ways to place n stones into the k X n grid of squares such that each of the k rows contains at least one stone. See A259051. One can use a partition array for this (and the T(n,k)) problem. See A258152. - _Wolfdieter Lang_, Jun 17 2015 %H A258371 Giovanni Resta, <a href="/A258371/b258371.txt">Table of n, a(n) for n = 1..1830</a> (first 60 rows) %F A258371 T(n,2) = binomial(n,2)*(binomial(2*n,n)-2). - _Giovanni Resta_, May 28 2015 %e A258371 The number of ways of arranging eight pawns on a standard chessboard such that two rows contain at least one pawn is T(8,2)=360304. %e A258371 Triangle T(n,k) begins: %e A258371 n\k 1 2 3 4 5 6 ... %e A258371 1: 1 %e A258371 2: 2 4 %e A258371 3: 3 54 27 %e A258371 4: 4 408 1152 256 %e A258371 5: 5 2500 22500 25000 3125 %e A258371 6: 6 13830 315900 988200 583200 46656 %e A258371 ... %e A258371 n = 7: 7 72030 3709545 25882780 40588905 14823774 823543, %e A258371 n = 8: 8 360304 39024384 535754240 1766195200 1657012224 411041792 16777216. %t A258371 T[n_,k_]:= Binomial[n,k] * Sum[Multinomial@@ (Last/@ Tally[e]) * Times@@ Binomial[n,e], {e, IntegerPartitions[n, {k}]}]; Flatten@ Table[ T[n,k],{n,9}, {k,n}] (* _Giovanni Resta_, May 28 2015 *) %Y A258371 Cf. A000312, A014062, A258152, A259051. %K A258371 nonn,tabl %O A258371 1,2 %A A258371 _Adam J.T. Partridge_, May 28 2015