This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258382 #42 May 22 2025 10:21:43 %S A258382 144,441,1584,4851,10404,12544,14544,14884,15984,27648,40401,44521, %T A258382 44541,48841,48951,84672,114444,137984,144144,159984,409739,441441, %U A258382 444411,489731,489951,937904,1004004,1022121,1024144,1042441,1044484,1050804 %N A258382 Non-palindromic numbers n such that the square root of n multiplied by the reversal of n is a palindrome. %C A258382 This sequence is infinite, because it contains several infinite subsequences such as: sqrt(1584*4851)=2772, sqrt(15984*48951)=27972, sqrt(159..984*489...951)=279...972. %C A258382 It appears that the first (or last) digit is never 5, 6 or 7. %H A258382 Pieter Post and Giovanni Resta, <a href="/A258382/b258382.txt">Table of n, a(n) for n = 1..1124</a> (first 246 terms from Pieter Post, terms < 10^12) %F A258382 Numbers n such that sqrt(n*reversal(n)) is a palindrome, where n is not a palindrome. %e A258382 27648 is in the sequence because sqrt(27648*84672)=48384. %t A258382 palQ[n_] := Block[{d = IntegerDigits@ n}, And[IntegerQ@ n, d == Reverse@ d]]; Select[Range@ 100000, And[! palQ@ #, palQ[Sqrt[# FromDigits@ Reverse@ IntegerDigits@ #]]] &] (* _Michael De Vlieger_, May 28 2015 *) %o A258382 (Python) %o A258382 for n in range (1, 10**9): %o A258382 y=int(str(n)[::-1]) %o A258382 ya=int(pow(n*y,1/2)) %o A258382 if ya==int(str(ya)[::-1]) and n*y==ya**2 and n!=y: %o A258382 print (n) %o A258382 (PARI) rev(k) = subst(Polrev(digits(k)), x, 10); %o A258382 isok(n) = {rn = rev(n); if (rn != n, nrn = n*rn; issquare(nrn) && (y=sqrtint(nrn)) && (y == rev(y)););} \\ _Michel Marcus_, May 29 2015 %Y A258382 Cf. A002113, A002778, A059744, A004086, A117281. %K A258382 nonn,base %O A258382 1,1 %A A258382 _Pieter Post_, May 28 2015