cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258386 Expansion of Product_{k>=1} 1/(1-x^k)^(k+(-1)^k).

This page as a plain text file.
%I A258386 #6 May 28 2015 12:52:28
%S A258386 1,0,3,2,11,10,35,40,107,138,310,432,871,1262,2355,3504,6186,9318,
%T A258386 15799,23934,39351,59672,95772,144970,228258,344244,533552,800952,
%U A258386 1225164,1829530,2767227,4109504,6155310,9089834,13497964,19822252,29208812,42660456
%N A258386 Expansion of Product_{k>=1} 1/(1-x^k)^(k+(-1)^k).
%H A258386 Vaclav Kotesovec, <a href="/A258386/b258386.txt">Table of n, a(n) for n = 0..1000</a>
%F A258386 a(n) ~ (2*Zeta(3))^(13/36) / (sqrt(3) * Pi * n^(31/36)) * exp(Zeta'(-1) + 3*Zeta(3)^(1/3) * (n/2)^(2/3)), where Zeta(3) = A002117, Zeta'(-1) = A084448 = 1/12 - log(A074962). - _Vaclav Kotesovec_, May 28 2015
%t A258386 nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k+(-1)^k),{k,1,nmax}],{x,0,nmax}],x]
%Y A258386 Cf. A000219, A106507.
%K A258386 nonn
%O A258386 0,3
%A A258386 _Vaclav Kotesovec_, May 28 2015