This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258403 #43 Feb 16 2025 08:33:25 %S A258403 2,9,3,8,9,2,6,2,6,1,4,6,2,3,6,5,6,4,5,8,4,3,5,2,9,7,7,3,1,9,5,3,6,3, %T A258403 8,4,2,9,8,8,2,6,2,1,8,8,2,1,5,7,2,9,9,5,5,3,6,1,3,6,2,4,0,3,7,8,6,3, %U A258403 9,2,3,7,0,8,1,1,7,5,9,7,8,7,5,4,2,5,2,0,2,4,9,3,1,3,7,0,6,6,7,9,8 %N A258403 Decimal expansion of the area of the regular 10-gon (decagon) of circumradius = 1. %C A258403 Quartic number of degree 4 and denominator 2; minimal polynomial 16x^4 - 500x^2 + 3125. - _Charles R Greathouse IV_, Apr 20 2016 %H A258403 Chai Wah Wu, <a href="/A258403/b258403.txt">Table of n, a(n) for n = 1..10001</a> %H A258403 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/Decagon.html">Decagon</a> %H A258403 Wikipedia, <a href="http://en.wikipedia.org/wiki/Decagon">Decagon</a> %F A258403 Equals (5/2)*sqrt((5-sqrt(5))/2). %F A258403 Area formulas from triangle to dodecagon, with circumradius 1: %F A258403 n-gon area(n) = (1/2)*n*sin(2*Pi/n) %F A258403 3-gon (3*sqrt(3))/4 %F A258403 4-gon 2 %F A258403 5-gon (5/4)*sqrt((5+sqrt(5))/2) %F A258403 6-gon (3*sqrt(3))/2 %F A258403 7-gon (7/2)*cos((3*Pi)/14) %F A258403 8-gon 2*sqrt(2) %F A258403 9-gon (9/2)*sin((2*Pi)/9) %F A258403 10-gon (5/2)*sqrt((5-sqrt(5))/2) %F A258403 11-gon (11/2)*sin((2*Pi)/11) %F A258403 12-gon 3 %F A258403 This constant is (5/2)*A182007. - _Wolfdieter Lang_, May 08 2018 %e A258403 2.9389262614623656458435297731953638429882621882157299553613624... %t A258403 RealDigits[(5/2)*Sqrt[(5 - Sqrt[5])/2], 10, 101] // First %o A258403 (PARI) (5/2)*sqrt((5 - sqrt(5))/2) \\ _Michel Marcus_, May 29 2015 %Y A258403 Cf. A104954 (triangle), A104955 (pentagon), A104956 (hexagon), A104957 (heptagon). %Y A258403 Cf. A178816 (area of decagon with edge length 1). A182007. %K A258403 nonn,cons,easy %O A258403 1,1 %A A258403 _Jean-François Alcover_, May 29 2015