This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258407 #25 Aug 23 2025 09:56:55 %S A258407 1,9,6,8,8,0,6,1,5,3,1,4,5,8,8,9,7,5,3,5,3,3,5,1,3,5,8,4,7,6,9,6,6,6, %T A258407 8,2,9,6,6,7,3,4,3,1,7,8,3,9,1,7,5,7,5,8,6,0,9,3,3,5,7,0,6,2,6,8,9,9, %U A258407 0,1,5,1,1,1,1,0,5,6,2,0,9,2,2,2,9,0,5,1,0,6,0,2,7,8,3,7,4,5,6,7,3,5,4,1,8,3 %N A258407 Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^k)^3 dx. %C A258407 In general, Integral_{x=0..1} Product_{k>=1} (1-x^(m*k))^3 dx = Sum_{n>=0} (-1)^n * (2*n+1) / (m*n*(n+1)/2 + 1) is equal to %C A258407 if 0<m<8: 2*Pi / (m * cosh((Pi/2)*sqrt(8/m-1))) %C A258407 if m = 8: Pi/4 %C A258407 if m > 8: 2*Pi / (m * cos((Pi/2)*sqrt(1-8/m))) %C A258407 Special values: m=4: Pi/(2*cosh(Pi/2)), m=9: 4*Pi/(9*sqrt(3)). %C A258407 --- %C A258407 Integral_{x=-1..1} Product_{k>=1} (1-x^k)^3 dx = 2*Pi*(1 + sqrt(2) * cosh(sqrt(7)*Pi/4)) / cosh(sqrt(7)*Pi/2) = 1.32639350417409769439126... . - _Vaclav Kotesovec_, Jun 02 2015 %H A258407 Vaclav Kotesovec, <a href="http://oeis.org/A258232/a258232_2.pdf">The integration of q-series</a> %F A258407 Equals 2*Pi/cosh(sqrt(7)*Pi/2). %F A258407 Equals Sum_{n>=0} (-1)^n * (2*n+1) / (n*(n+1)/2 + 1). %e A258407 0.1968806153145889753533513584769666829667343178391757586093357... %p A258407 evalf(2*Pi/cosh(sqrt(7)*Pi/2), 120); %p A258407 evalf(Sum((-1)^n * (2*n+1) / (n*(n+1)/2 + 1), n=0..infinity), 120); %t A258407 RealDigits[2*Pi*Sech[(Sqrt[7]*Pi)/2],10,105][[1]] %o A258407 (PARI) 2*Pi/cosh((sqrt(7)*Pi)/2) \\ _Stefano Spezia_, Aug 23 2025 %Y A258407 Cf. A010816, A258232, A258406, A258404, A258405. %K A258407 nonn,cons,changed %O A258407 0,2 %A A258407 _Vaclav Kotesovec_, May 29 2015