cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258408 Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^(2*k)) dx.

Original entry on oeis.org

5, 7, 7, 3, 3, 2, 1, 2, 0, 1, 8, 3, 9, 7, 9, 7, 0, 5, 5, 5, 2, 5, 4, 6, 9, 6, 2, 0, 1, 5, 9, 0, 4, 1, 5, 5, 0, 8, 0, 1, 1, 9, 3, 1, 3, 8, 3, 5, 6, 3, 4, 9, 2, 4, 5, 5, 8, 9, 0, 8, 8, 0, 3, 7, 5, 1, 5, 2, 5, 2, 1, 6, 4, 5, 1, 9, 8, 7, 7, 8, 1, 3, 5, 0, 6, 3, 7, 1, 0, 7, 0, 0, 0, 0, 0, 7, 1, 5, 4, 0, 9, 7, 8, 4, 7, 8
Offset: 0

Views

Author

Vaclav Kotesovec, May 29 2015

Keywords

Comments

In general, Integral_{x=0..1} Product_{k>=1} (1-x^(m*k)) dx = Sum_{n} (-1)^n / (m*n*(3*n-1)/2 + 1) is equal to
if 0
(sqrt((24-m)*m) * (2*cosh(Pi/3*sqrt(24/m-1))-1))
if m = 24: Pi^2/(6*sqrt(3)) = A258414
if m > 24: 8*sqrt(3)*Pi*sin(Pi/6*sqrt(1-24/m)) /
(sqrt((m-24)*m) * (2*cos(Pi/3*sqrt(1-24/m))-1)).
Integral_{x=0..1} Product_{k=1..n} (1+x^(m*k)) dx, where m >= 1, is asymptotic to 2*(m+1)^(n+1)/(m*n^2).
Integral_{x=-1..1} Product_{k>=1} (1-x^(2*k)) dx = 8*Pi*sqrt(3/11) * sinh(sqrt(11)*Pi/6) / (2*cosh(sqrt(11)*Pi/3)-1) = 1.154664240367959678... . - Vaclav Kotesovec, Jun 02 2015

Examples

			0.5773321201839797055525469620159041550801193138356349245589088...
		

Crossrefs

Programs

  • Maple
    evalf(4*Pi*sqrt(3/11) * sinh(sqrt(11)*Pi/6) / (2*cosh(sqrt(11)*Pi/3) - 1), 120);
  • Mathematica
    RealDigits[4*Pi*Sqrt[3/11]*Sinh[Sqrt[11]*Pi/6] / (2*Cosh[Sqrt[11]*Pi/3] - 1),10,120][[1]]

Formula

Equals 4*Pi*sqrt(3/11) * sinh(sqrt(11)*Pi/6) / (2*cosh(sqrt(11)*Pi/3) - 1).