cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258415 Array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = (2 + 2^(n-1)*(6*k - 3 + 2*(-1)^n))/3, n,k >= 1.

This page as a plain text file.
%I A258415 #13 Nov 06 2015 13:32:13
%S A258415 1,4,3,2,8,5,14,10,12,7,6,30,18,16,9,54,38,46,26,20,11,22,118,70,62,
%T A258415 34,24,13,214,150,182,102,78,42,28,15,86,470,278,246,134,94,50,32,17,
%U A258415 854,598,726,406,310,166,110,58,36,19
%N A258415 Array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = (2 + 2^(n-1)*(6*k - 3 + 2*(-1)^n))/3, n,k >= 1.
%C A258415 The sequence is a permutation of the natural numbers.
%C A258415 Theorem: Let v(y) denote the 2-adic valuation of y. For x an odd natural number, let F(x) = (3*x+1)/2^v(3*x+1) (see A075677). Row n of A is the set of all natural numbers m such that v(1+F(4*(2*m-1)-3)) = n.
%F A258415 A(n,k) = (1 + A257499(n,k))/2.
%e A258415 Array begins:
%e A258415 .      1     3     5     7     9    11    13    15    17     19
%e A258415 .      4     8    12    16    20    24    28    32    36     40
%e A258415 .      2    10    18    26    34    42    50    58    66     74
%e A258415 .     14    30    46    62    78    94   110   126   142    158
%e A258415 .      6    38    70   102   134   166   198   230   262    294
%e A258415 .     54   118   182   246   310   374   438   502   566    630
%e A258415 .     22   150   278   406   534   662   790   918  1046   1174
%e A258415 .    214   470   726   982  1238  1494  1750  2006  2262   2518
%e A258415 .     86   598  1110  1622  2134  2646  3158  3670  4182   4694
%e A258415 .    854  1878  2902  3926  4950  5974  6998  8022  9046  10070
%t A258415 (* Array: *)
%t A258415 Grid[Table[(2 + 2^(n - 1)*(6*k - 3 + 2*(-1)^n))/3, {n, 10}, {k, 10}]]
%t A258415 (* Array antidiagonals flattened: *)
%t A258415 Flatten[Table[(2 + 2^(n - k)*(6*k - 3 + 2*(-1)^(n - k + 1)))/3, {n, 10}, {k, n}]]
%Y A258415 Cf. A005408, A008586, A017089 (rows 1-3).
%Y A258415 Cf. A075677, A257480, A257499.
%K A258415 nonn,tabl
%O A258415 1,2
%A A258415 _L. Edson Jeffery_, May 29 2015