cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258441 9-gonal numbers (A001106) that are the sum of two consecutive 9-gonal numbers.

This page as a plain text file.
%I A258441 #11 Mar 07 2016 06:12:41
%S A258441 24486,959892121,37629690894906,1475159141502204841,
%T A258441 57829188627539743273926,2267019851101653874322234161,
%U A258441 88871712145057846553640480297546,3483948857243537849494160234302156081,136577763012789458630812222951472642381766
%N A258441 9-gonal numbers (A001106) that are the sum of two consecutive 9-gonal numbers.
%H A258441 Colin Barker, <a href="/A258441/b258441.txt">Table of n, a(n) for n = 1..217</a>
%H A258441 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (39203,-39203,1).
%F A258441 a(n) = 39203*a(n-1) - 39203*a(n-2) + a(n-3).
%F A258441 G.f.: -x*(x^2-32537*x+24486) / ((x-1)*(x^2-39202*x+1)).
%F A258441 a(n) = (46+(89-36*sqrt(2))*(19601+13860*sqrt(2))^(-n)+(89+36*sqrt(2))*(19601+13860*sqrt(2))^n)/224. - _Colin Barker_, Mar 07 2016
%e A258441 24486 is in the sequence because A001106(84) = 24486 = 12036 + 12450 = A001106(59) + A001106(60), where A001106(k) is the k-th 9-gonal number.
%o A258441 (PARI) Vec(-x*(x^2-32537*x+24486)/((x-1)*(x^2-39202*x+1)) + O(x^20))
%Y A258441 Cf. A001106, A258442, A258443, A258444.
%K A258441 nonn,easy
%O A258441 1,1
%A A258441 _Colin Barker_, May 30 2015