cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258485 Number of tangled chains of length k=7.

Original entry on oeis.org

1, 1, 365, 7119961, 1172597933594, 934741501255380321, 2602204282373953017437500, 20410544568790568555722851029455, 387481340785957748099474582410763014214, 15899856312608503503306403988460714538830399657
Offset: 1

Views

Author

Keywords

Comments

Tangled chains are ordered lists of k rooted binary trees with n leaves and a matching between each leaf from the i-th tree with a unique leaf from the (i+1)-st tree up to isomorphism on the binary trees. This sequence fixes k=6, and n = 1,2,3,...

References

  • R. Page, Tangled trees: phylogeny, cospeciation, and coevolution, The University of Chicago Press, 2002.

Crossrefs

Cf. A000123 (binary partitions), A258620 (tanglegrams), A258485, A258486, A258487, A258488, A258489 (tangled chains), A259114 (unordered tanglegrams).

Formula

t(n) = Sum_{b=(b(1),...,b(t))} Product_{i=2..t} (2(b(i)+...+b(t))-1)^7)/z(b) where the sum is over all binary partitions of n and z(b) is the size of the stabilizer of a permutation of cycle type b under conjugation.