This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258487 #14 Jul 23 2015 04:18:27 %S A258487 1,1,14,2140,1017219,1110178602,2320017306125,8278981347401059, %T A258487 46556715158334549170,388779284837787599307987, %U A258487 4605471565794120802036550000,74633554055057890778698344509705,1606481673354648219373898238155693682,44821655543075499856527523557216582931002 %N A258487 Number of tangled chains of length k=4. %C A258487 Tangled chains are ordered lists of k rooted binary trees with n leaves and a matching between each leaf from the i-th tree with a unique leaf from the (i+1)-st tree up to isomorphism on the binary trees. This sequence fixes k=4, and n = 1,2,3,... %D A258487 R. Page, Tangled trees: phylogeny, cospeciation, and coevolution, The University of Chicago Press, 2002. %H A258487 S. Billey, <a href="/A258487/b258487.txt">Table of n, a(n) for n = 1..20</a> %H A258487 Sara Billey, Matjaž Konvalinka, and Frederick A. Matsen IV, <a href="http://arxiv.org/abs/1507.04976">On the enumeration of tanglegrams and tangled chains</a>, arXiv:1507.04976 [math.CO], 2015. %F A258487 t(n) = Sum_{b=(b(1),...,b(t))} Product_{i=2..t} (2(b(i)+...+b(t))-1)^4)/z(b) where the sum is over all binary partitions of n and z(b) is the size of the stabilizer of a permutation of cycle type b under conjugation. %Y A258487 Cf. A000123 (binary partitions), A258620 (tanglegrams), A258485, A258486, A258487, A258488, A258489 (tangled chains), A259114 (unordered tanglegrams). %K A258487 nonn %O A258487 1,3 %A A258487 _Sara Billey_, _Matjaz Konvalinka_, and _Frederick A. Matsen IV_, May 31 2015