cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258498 Number of words of length 2n such that the index set of occurring letters is {1, 2, ..., k}, all letters are introduced in ascending order, and the words can be built by repeatedly inserting doublets into the initially empty word.

This page as a plain text file.
%I A258498 #17 Jan 01 2021 08:07:24
%S A258498 1,1,3,15,105,933,9988,124449,1761287,27813479,483482018,9153385959,
%T A258498 187129080977,4102129113670,95861136747795,2376234441556411,
%U A258498 62216635372018209,1714347701138957189,49553280367466054768,1498300016807379304877,47270249397381096576643
%N A258498 Number of words of length 2n such that the index set of occurring letters is {1, 2, ..., k}, all letters are introduced in ascending order, and the words can be built by repeatedly inserting doublets into the initially empty word.
%H A258498 Alois P. Heinz, <a href="/A258498/b258498.txt">Table of n, a(n) for n = 0..447</a>
%F A258498 a(n) = Sum_{k=0..n} A256117(n,k).
%F A258498 a(n) ~ Bell(n-1)*Catalan(n) ~ n^n * exp(n/LambertW(n)-1-n) * 4^n / (sqrt(Pi) * sqrt(1+LambertW(n)) * LambertW(n)^(n-1) * n^(5/2)). - _Vaclav Kotesovec_, Jun 02 2015
%e A258498 a(3) = 15: aaaaaa, aaaabb, aaabba, aabaab, aabbaa, aabbbb, abaaba, abbaaa, abbabb, abbbba, aabbcc, aabccb, abbacc, abbcca, abccba.
%p A258498 A:= proc(n, k) option remember; `if`(n=0, 1, k/n*
%p A258498       add(binomial(2*n, j)*(n-j)*(k-1)^j, j=0..n-1))
%p A258498     end:
%p A258498 T:= (n, k)-> add((-1)^i*A(n, k-i)/(i!*(k-i)!), i=0..k):
%p A258498 a:= n-> add(T(n, k), k=0..n):
%p A258498 seq(a(n), n=0..25);
%t A258498 A[n_, k_] := A[n, k] = If[n == 0, 1, k/n*Sum[Binomial[2*n, j]*(n - j)*If[j == 0, 1, (k - 1)^j], {j, 0, n - 1}]];
%t A258498 T[n_, k_] := Sum[(-1)^i*A[n, k - i]/(i!*(k - i)!), {i, 0, k}];
%t A258498 a[n_] := Sum[T[n, k], {k, 0, n}];
%t A258498 a /@ Range[0, 25] (* _Jean-François Alcover_, Jan 01 2021, after _Alois P. Heinz_ *)
%Y A258498 Row sums of A256117.
%Y A258498 Cf. A294603, A321031.
%K A258498 nonn
%O A258498 0,3
%A A258498 _Alois P. Heinz_, May 31 2015