A258580 Least positive integer k such that (prime(j*n)+prime(k*n))/2 = prime(i*n)^2 for some integers i > 0 and 0 < j < k.
3, 9, 4, 127, 98, 133, 55, 78, 65, 85, 375, 109, 251, 283, 105, 462, 681, 149, 156, 213, 525, 209, 205, 381, 757, 313, 252, 615, 61, 737, 478, 1754, 406, 1197, 131, 420, 492, 503, 127, 119, 549, 1748, 95, 442, 2740, 555, 677, 1258, 163, 816, 1649, 710, 203, 126, 628, 582, 1004, 135, 837, 1000
Offset: 1
Keywords
Examples
a(1) = 3 since (prime(2*1)+prime(3*1))/2 = (3+5)/2 = 2^2 = prime(1*1)^2. a(158) = 8405 since (prime(778*158)+prime(8405*158))/2 = (1625551+20967091)/2 = 3361^2 = prime(3*158)^2.
References
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..160
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
PQ[n_,m_]:=PrimeQ[Sqrt[m]]&&Mod[PrimePi[Sqrt[m]],n]==0 Do[k=0;Label[bb];k=k+1;Do[If[PQ[n,(Prime[k*n]+Prime[j*n])/2],Goto[aa]];Continue,{j,1,k-1}];Goto[bb]; Label[aa];Print[n," ",k];Continue,{n,1,60}]
Comments