This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258584 #33 Dec 13 2023 08:50:15 %S A258584 86,860,1975,2160,3575,19750,21600,35750,43614,51884,65625,479900, %T A258584 868688,967750,1435575,1548384,1696875,4799000,8686880,9677500, %U A258584 28874200,34095100,38748800,39214560,47613625,53415625,148385715,156293216,288742000,340951000,387488000 %N A258584 Numbers n such that n = Sum_{j>=1} c(j) where c(0) = n, c(j) = floor(c(j-1)/10^k)*(c(j-1) mod 10^k) for j>0, and k is half the number of digits of n, rounded up if the number of digits of n is odd. %C A258584 If n is an odd-digit decimal number, the first half is one digit smaller than the second half. For example, 43614 is in the sequence, because 43*614 = 26402, 26*402 = 10452, 10*452 = 4520, 4*520 = 2080, 2*80 = 160. Here the iteration stops because 160 has three digits, so the first half of the next multiplication is zero. 43614 = 26402 + 10452 + 4520 + 2080 + 160. %C A258584 If n is an even-digit decimal number, the first half and the second half have the same length. For example, 868688 is in the sequence because 868*688 = 597184, 597*184 = 109848, 109*848 = 92432, 92*432 = 39744, 39*744 = 29016, 29*16 = 464, and here the iteration stops. 868688 = 597184 + 109848 + 92432 + 39744 + 29016 + 464. %C A258584 If n is in the sequence and has an even number of digits, then 10*n is also in the sequence. - _Jon E. Schoenfield_, Nov 07 2015 %e A258584 86 is in the sequence because 8*6 = 48, 4*8 = 32 and 3*2 = 6. And 86 = 48 + 32 + 6. %t A258584 fQ[n_] := Block[{i = Ceiling[IntegerLength[n]/2], g}, g[x_] := If[IntegerLength@ x <= i, x, Times @@ (FromDigits /@ {If[IntegerLength@ x - i == 0, Nothing, Take[IntegerDigits@ x, IntegerLength@ x - i]], Take[IntegerDigits@ x, -i]})]; Total@ Rest@ Most@ FixedPointList[g, n] == n]; Select[Range@ 500000, fQ] (* _Michael De Vlieger_, Nov 06 2015 *) %o A258584 (Python) %o A258584 def pod(n, m): %o A258584 kk = 1 %o A258584 while n > 0: %o A258584 kk= kk*(n%m) %o A258584 n =int(n//m) %o A258584 return kk %o A258584 for b in range(0, 6): %o A258584 dd, bb=0, (b-1)//2+2 %o A258584 j=10**bb %o A258584 for c in range (10*j, 100*j): %o A258584 d, a, ca=0, 0, pod(c, j) %o A258584 while ca>0: %o A258584 d, a=d+ca, a+1 %o A258584 if ca<j: %o A258584 ca=j %o A258584 ca=pod(ca, j) %o A258584 if c==d and ca==0: %o A258584 print (a, c) %Y A258584 Cf. A003001, A014553, A135385. %K A258584 nonn,base %O A258584 1,1 %A A258584 _Pieter Post_, Nov 06 2015 %E A258584 a(21)-a(31) from _Jon E. Schoenfield_, Nov 07 2015 %E A258584 Obsolete b-file deleted by _N. J. A. Sloane_, Jan 05 2019