This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258599 #17 Sep 10 2024 14:21:18 %S A258599 2,4,6,10,16,20,28,31,39,48,51,65,71,75,84,94,107,110,120,129,133,145, %T A258599 152,163,180,187,191,199,202,212,238,246,258,261,282,286,297,309,319, %U A258599 330,342,344,366,372,377,382,407,431,440,443,450,463,468,487,498 %N A258599 a(n) is the index m such that A001694(m) = prime(n)^2. %H A258599 Reinhard Zumkeller, <a href="/A258599/b258599.txt">Table of n, a(n) for n = 1..1000</a> %F A258599 A001694(a(n)) = A001248(n) = prime(n)^2. %F A258599 A001694(m) mod prime(n) > 0 for m < a(n). %F A258599 Also smallest number m such that A258567(m) = prime(n): %F A258599 A258567(a(n)) = A000040(n) and A258567(m) != A000040(n) for m < a(n). %e A258599 . n | p | a(n) | A001694(a(n)) = A001248(n) = p^2 %e A258599 . ----+----+-------+--------------------------------- %e A258599 . 1 | 2 | 2 | 4 %e A258599 . 2 | 3 | 4 | 9 %e A258599 . 3 | 5 | 6 | 25 %e A258599 . 4 | 7 | 10 | 49 %e A258599 . 5 | 11 | 16 | 121 %e A258599 . 6 | 13 | 20 | 169 %e A258599 . 7 | 17 | 28 | 289 %e A258599 . 8 | 19 | 31 | 361 %e A258599 . 9 | 23 | 39 | 529 %e A258599 . 10 | 29 | 48 | 841 %e A258599 . 11 | 31 | 51 | 961 %e A258599 . 12 | 37 | 65 | 1369 %e A258599 . 13 | 41 | 71 | 1681 %e A258599 . 14 | 43 | 75 | 1849 %e A258599 . 15 | 47 | 84 | 2209 %e A258599 . 16 | 53 | 94 | 2809 %e A258599 . 17 | 59 | 107 | 3481 %e A258599 . 18 | 61 | 110 | 3721 %e A258599 . 19 | 67 | 120 | 4489 %e A258599 . 20 | 71 | 129 | 5041 %e A258599 . 21 | 73 | 133 | 5329 %e A258599 . 22 | 79 | 145 | 6241 %e A258599 . 23 | 83 | 152 | 6889 %e A258599 . 24 | 89 | 163 | 7921 %e A258599 . 25 | 97 | 180 | 9409 . %t A258599 With[{m = 60}, c = Select[Range[Prime[m]^2], Min[FactorInteger[#][[;; , 2]]] > 1 &]; 1 + Flatten[FirstPosition[c, #] & /@ (Prime[Range[m]]^2)]] (* _Amiram Eldar_, Feb 07 2023 *) %o A258599 (Haskell) %o A258599 import Data.List (elemIndex); import Data.Maybe (fromJust) %o A258599 a258599 = (+ 1) . fromJust . (`elemIndex` a258567_list) . a000040 %o A258599 (Python) %o A258599 from math import isqrt %o A258599 from sympy import prime, integer_nthroot, factorint %o A258599 def A258599(n): %o A258599 m = prime(n)**2 %o A258599 return int(sum(isqrt(m//k**3) for k in range(1, integer_nthroot(m, 3)[0]+1) if all(d<=1 for d in factorint(k).values()))) # _Chai Wah Wu_, Sep 10 2024 %Y A258599 Cf. A258567, A000040, A001248, A001694, A258600, A258601, A258602, A258603. %K A258599 nonn %O A258599 1,1 %A A258599 _Reinhard Zumkeller_, Jun 06 2015