This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258601 #20 Sep 11 2024 00:33:18 %S A258601 2,5,10,16,28,37,55,61,80,105,113,142,163,170,190,219,249,260,286,310, %T A258601 318,352,374,407,448,472,482,505,511,536,614,634,672,682,740,754,783, %U A258601 821,842,878,916,924,984,996,1015,1032,1103,1171,1201,1213,1233,1270,1286,1343,1379 %N A258601 a(n) is the index m such that A036967(m) = prime(n)^4. %C A258601 A036967(a(n)) = A030514(n) = prime(n)^4; %C A258601 A036967(m) mod prime(n) > 0 for m < a(n); %C A258601 also smallest number m such that A258569(m) = prime(n): %C A258601 A258569(a(n)) = A000040(n) and A258569(m) != A000040(n) for m < a(n). %H A258601 Andrew Howroyd, <a href="/A258601/b258601.txt">Table of n, a(n) for n = 1..1000</a> %e A258601 . n | p | a(n) | A036967(a(n)) = A030514(n) = p^4 %e A258601 . ----+----+-------+--------------------------------- %e A258601 . 1 | 2 | 2 | 16 %e A258601 . 2 | 3 | 5 | 81 %e A258601 . 3 | 5 | 10 | 625 %e A258601 . 4 | 7 | 16 | 2401 %e A258601 . 5 | 11 | 28 | 14641 %e A258601 . 6 | 13 | 37 | 28561 %e A258601 . 7 | 17 | 55 | 83521 %e A258601 . 8 | 19 | 61 | 130321 %e A258601 . 9 | 23 | 80 | 279841 %e A258601 . 10 | 29 | 105 | 707281 %e A258601 . 11 | 31 | 113 | 923521 %e A258601 . 12 | 37 | 142 | 1874161 %e A258601 . 13 | 41 | 163 | 2825761 %e A258601 . 14 | 43 | 170 | 3418801 %e A258601 . 15 | 47 | 190 | 4879681 %e A258601 . 16 | 53 | 219 | 7890481 %e A258601 . 17 | 59 | 249 | 12117361 %e A258601 . 18 | 61 | 260 | 13845841 %e A258601 . 19 | 67 | 286 | 20151121 %e A258601 . 20 | 71 | 310 | 25411681 %e A258601 . 21 | 73 | 318 | 28398241 %e A258601 . 22 | 79 | 352 | 38950081 %e A258601 . 23 | 83 | 374 | 47458321 %e A258601 . 24 | 89 | 407 | 62742241 %e A258601 . 25 | 97 | 448 | 88529281 %o A258601 (Haskell) %o A258601 import Data.List (elemIndex); import Data.Maybe (fromJust) %o A258601 a258601 = (+ 1) . fromJust . (`elemIndex` a258569_list) . a000040 %o A258601 (Python) %o A258601 from math import gcd %o A258601 from sympy import prime, integer_nthroot, factorint %o A258601 def A258601(n): %o A258601 c, m = 0, prime(n)**4 %o A258601 for u in range(1,integer_nthroot(m,7)[0]+1): %o A258601 if all(d<=1 for d in factorint(u).values()): %o A258601 for w in range(1,integer_nthroot(a:=m//u**7,6)[0]+1): %o A258601 if gcd(w,u)==1 and all(d<=1 for d in factorint(w).values()): %o A258601 for y in range(1,integer_nthroot(z:=a//w**6,5)[0]+1): %o A258601 if gcd(w,y)==1 and gcd(u,y)==1 and all(d<=1 for d in factorint(y).values()): %o A258601 c += integer_nthroot(z//y**5,4)[0] %o A258601 return c # _Chai Wah Wu_, Sep 10 2024 %o A258601 (PARI) \\ Gen(limit,k) defined in A036967. %o A258601 a(n)=#Gen(prime(n)^4,4) \\ _Andrew Howroyd_, Sep 10 2024 %Y A258601 Cf. A258569, A000040, A030514, A036967, A258599, A258600, A258602, A258603. %K A258601 nonn %O A258601 1,1 %A A258601 _Reinhard Zumkeller_, Jun 06 2015 %E A258601 a(11) onwards corrected by _Chai Wah Wu_ and _Andrew Howroyd_, Sep 10 2024