This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258602 #19 Sep 11 2024 00:33:57 %S A258602 2,5,12,20,37,45,68,82,106,142,154,196,219,234,260,305,342,360,407, %T A258602 434,451,496,528,573,635,668,681,720,737,770,885,919,966,984,1065, %U A258602 1087,1139,1193,1228,1283,1331,1348,1440,1455,1484,1509,1624,1731,1767,1789 %N A258602 a(n) is the index m such that A069492(m) = prime(n)^5. %C A258602 A069492(a(n)) = A050997(n) = prime(n)^5; %C A258602 A069492(m) mod prime(n) > 0 for m < a(n); %C A258602 also smallest number m such that A258570(m) = prime(n): %C A258602 A258570(a(n)) = A000040(n) and A258570(m) != A000040(n) for m < a(n). %H A258602 Andrew Howroyd, <a href="/A258602/b258602.txt">Table of n, a(n) for n = 1..1000</a> %e A258602 . n | p | a(n) | A069492(a(n)) = A050997(n) = p^5 %e A258602 . ----+----+-------+--------------------------------- %e A258602 . 1 | 2 | 2 | 32 %e A258602 . 2 | 3 | 5 | 243 %e A258602 . 3 | 5 | 12 | 3125 %e A258602 . 4 | 7 | 20 | 16807 %e A258602 . 5 | 11 | 37 | 161051 %e A258602 . 6 | 13 | 45 | 371293 %e A258602 . 7 | 17 | 68 | 1419857 %e A258602 . 8 | 19 | 82 | 2476099 %e A258602 . 9 | 23 | 106 | 6436343 %e A258602 . 10 | 29 | 142 | 20511149 %e A258602 . 11 | 31 | 154 | 28629151 %e A258602 . 12 | 37 | 196 | 69343957 %e A258602 . 13 | 41 | 219 | 115856201 %e A258602 . 14 | 43 | 234 | 147008443 %e A258602 . 15 | 47 | 260 | 229345007 %e A258602 . 16 | 53 | 305 | 418195493 %e A258602 . 17 | 59 | 342 | 714924299 %e A258602 . 18 | 61 | 360 | 844596301 %e A258602 . 19 | 67 | 407 | 1350125107 %e A258602 . 20 | 71 | 434 | 1804229351 %e A258602 . 21 | 73 | 451 | 2073071593 %e A258602 . 22 | 79 | 496 | 3077056399 %e A258602 . 23 | 83 | 528 | 3939040643 %e A258602 . 24 | 89 | 573 | 5584059449 %e A258602 . 25 | 97 | 635 | 8587340257 . %o A258602 (Haskell) %o A258602 import Data.List (elemIndex); import Data.Maybe (fromJust) %o A258602 a258602 = (+ 1) . fromJust . (`elemIndex` a258570_list) . a000040 %o A258602 (Python) %o A258602 from math import gcd %o A258602 from sympy import prime, integer_nthroot, factorint %o A258602 def A258602(n): %o A258602 c, m = 0, prime(n)**5 %o A258602 for t in range(1,integer_nthroot(m,9)[0]+1): %o A258602 if all(d<=1 for d in factorint(t).values()): %o A258602 for u in range(1,integer_nthroot(s:=m//t**9,8)[0]+1): %o A258602 if gcd(t,u)==1 and all(d<=1 for d in factorint(u).values()): %o A258602 for w in range(1,integer_nthroot(a:=s//u**8,7)[0]+1): %o A258602 if gcd(u,w)==1 and gcd(t,w)==1 and all(d<=1 for d in factorint(w).values()): %o A258602 for y in range(1,integer_nthroot(z:=a//w**7,6)[0]+1): %o A258602 if gcd(w,y)==1 and gcd(u,y)==1 and gcd(t,y)==1 and all(d<=1 for d in factorint(y).values()): %o A258602 c += integer_nthroot(z//y**6,5)[0] %o A258602 return c # _Chai Wah Wu_, Sep 10 2024 %o A258602 (PARI) \\ Gen(limit,k) defined in A036967. %o A258602 a(n)=#Gen(prime(n)^5,5) \\ _Andrew Howroyd_, Sep 10 2024 %Y A258602 Cf. A258570, A000040, A050997, A069492, A258599, A258600, A258601, A258603. %K A258602 nonn %O A258602 1,1 %A A258602 _Reinhard Zumkeller_, Jun 06 2015 %E A258602 a(11) onwards corrected by _Chai Wah Wu_ and _Andrew Howroyd_, Sep 10 2024