A261243 Row lengths of the irregular triangles A258643 and A261242: maximal number of 0-islands (holes) of certain bisymmetric n X n matrices with 0 or 1 entries only.
1, 1, 2, 3, 6, 9, 14, 19, 26, 33, 42, 51, 62, 73, 86, 99, 114, 129, 146, 163, 182, 201, 222, 243, 266, 289, 314, 339, 366, 393, 422, 451, 482, 513, 546, 579, 614, 649, 686, 723, 762, 801, 842, 883, 926
Offset: 1
Formula
a(n) = ceiling(((n-2)^2)/2) + 1, n >= 2, a(1) = 1.
a(n) = (1/2)*(n-2)^2+1 if n is even, a(n) = (ceiling((n-2)/2))^2 + (floor((n-2)/2))^2 + 1 if n is odd >= 3, and a(1) = 1.
O.g.f.: x*(1 - x + x^3 + x^4)/((1-x^2)*(1-x)^2) (from the o.g.f. of A000982).
Comments