cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258658 E.g.f. A(x) satisfies: A(x) = exp( Integral A(x)^3 * Integral 1/A(x)^9 dx dx ).

This page as a plain text file.
%I A258658 #13 Jun 15 2015 08:33:47
%S A258658 1,1,3,123,3129,313929,23062347,4461062067,655619300721,
%T A258658 207299066045841,51139145307699603,23947711418548452843,
%U A258658 8930007221716001596329,5800583064218449362313689,3049682921576823757255485147,2622347479175212075411836474147,1849810669560927151969244969258721
%N A258658 E.g.f. A(x) satisfies: A(x) = exp( Integral A(x)^3 * Integral 1/A(x)^9 dx dx ).
%C A258658 More generally, we have the identity for real t:
%C A258658 * if G(x) = exp( Integral G(x)^t * Integral 1/G(x)^(3*t) dx dx ),
%C A258658 then G(x) = exp( Integral 1/G(x)^t * Integral G(x)^(3*t) dx dx ).
%H A258658 Vaclav Kotesovec, <a href="/A258658/b258658.txt">Table of n, a(n) for n = 0..180</a>
%F A258658 E.g.f. A(x) satisfies: A(x) = exp( Integral 1/A(x)^3 * Integral A(x)^9 dx dx ).
%e A258658 E.g.f. A(x) = 1 + x^2/2! + 3*x^4/4! + 123*x^6/6! + 3129*x^8/8! + 313929*x^10/10! +...
%o A258658 (PARI) {a(n) = local(A=1+x); for(i=1,n, A = exp( intformal( A^3 * intformal(1/A^9 + x*O(x^n)) ) ) ); n!*polcoeff(A,n)}
%o A258658 for(n=0,20,print1(a(2*n),", "))
%o A258658 (PARI) {a(n) = local(A=1+x); for(i=1,n, A = exp( intformal( 1/A^3 * intformal(A^9 + x*O(x^n)) ) ) ); n!*polcoeff(A,n)}
%o A258658 for(n=0,20,print1(a(2*n),", "))
%Y A258658 Cf. A159600, A258657, A258659.
%K A258658 nonn
%O A258658 0,3
%A A258658 _Paul D. Hanna_, Jun 06 2015