A258660 Numbers n such that the number of digits d in n is not prime and for each factor f of d the sum of the d/f digit groupings of size f is a square.
1, 4, 9, 1521, 3600, 7396, 8100, 103041, 120409, 160801, 11471769, 11655396, 12802084, 15210000, 22724289, 36000000, 42889401, 42928704, 45481536, 45968400, 46009089, 54567769, 61811044, 62236321, 70006689, 73925604, 73960000, 76965529, 79174404, 81000000, 85008400, 97693456, 97713225, 100000000
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..3730
Crossrefs
Cf. A153745.
Programs
-
Python
from sympy import divisors from gmpy2 import is_prime, isqrt, isqrt_rem, is_square A258660_list = [] for l in range(1,17): if not is_prime(l): fs = divisors(l) a, b = isqrt_rem(10**(l-1)) if b > 0: a += 1 for n in range(a,isqrt(10**l-1)+1): n2 = n**2 ns = str(n2) for g in fs: y = 0 for h in range(0,l,g): y += int(ns[h:h+g]) if not is_square(y): break else: A258660_list.append(n2) # Chai Wah Wu, Jun 08 2015
Formula
a(n) = A153745(n)^2.
Extensions
Corrected a(13)-a(14) by Chai Wah Wu, Jun 08 2015
Comments