cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258660 Numbers n such that the number of digits d in n is not prime and for each factor f of d the sum of the d/f digit groupings of size f is a square.

Original entry on oeis.org

1, 4, 9, 1521, 3600, 7396, 8100, 103041, 120409, 160801, 11471769, 11655396, 12802084, 15210000, 22724289, 36000000, 42889401, 42928704, 45481536, 45968400, 46009089, 54567769, 61811044, 62236321, 70006689, 73925604, 73960000, 76965529, 79174404, 81000000, 85008400, 97693456, 97713225, 100000000
Offset: 1

Views

Author

Doug Bell, Jun 06 2015

Keywords

Comments

If a(n) has m = p^k digits, then a(n)*10^((p-1)*m) is also a member of the sequence. For instance, 1521*10^(2^k-4) is in the sequence for all integers k >=2. # Chai Wah Wu, Jun 08 2015

Crossrefs

Cf. A153745.

Programs

  • Python
    from sympy import divisors
    from gmpy2 import is_prime, isqrt, isqrt_rem, is_square
    A258660_list = []
    for l in range(1,17):
        if not is_prime(l):
            fs = divisors(l)
            a, b = isqrt_rem(10**(l-1))
            if b > 0:
                a += 1
            for n in range(a,isqrt(10**l-1)+1):
                n2 = n**2
                ns = str(n2)
                for g in fs:
                    y = 0
                    for h in range(0,l,g):
                        y += int(ns[h:h+g])
                    if not is_square(y):
                        break
                else:
                    A258660_list.append(n2) # Chai Wah Wu, Jun 08 2015

Formula

a(n) = A153745(n)^2.

Extensions

Corrected a(13)-a(14) by Chai Wah Wu, Jun 08 2015