cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258670 Number of partitions of (2*n)! into parts that are at most n.

This page as a plain text file.
%I A258670 #10 Sep 20 2015 09:31:33
%S A258670 0,1,13,43561,455366036161,60209252317216962943201,
%T A258670 291857679749953126623181556402787323521,
%U A258670 120972618144269517756284629487432992029777542693069847287041
%N A258670 Number of partitions of (2*n)! into parts that are at most n.
%C A258670 Conjecture: If f(n) >= O(n^4) then "number of partitions of f(n) into parts that are at most n" is asymptotic to f(n)^(n-1) / (n!*(n-1)!). For the examples see A238016 and A238010.
%H A258670 Vaclav Kotesovec, <a href="/A258670/b258670.txt">Table of n, a(n) for n = 0..21</a>
%H A258670 G. J. Rieger, <a href="https://eudml.org/doc/160721">Über Partitionen</a>, Mathematische Annalen (1959), Volume: 138, page 356-362
%H A258670 A. V. Sills and D. Zeilberger, <a href="http://arxiv.org/abs/1108.4391">Formulae for the number of partitions of n into at most m parts (using the quasi-polynomial ansatz)</a> (arXiv:1108.4391 [math.CO])
%F A258670 a(n) ~ (2*n)!^(n-1) / (n!*(n-1)!).
%Y A258670 Cf. A236810, A237998, A238000, A238010, A238016, A258668, A258669, A258671.
%K A258670 nonn
%O A258670 0,3
%A A258670 _Vaclav Kotesovec_, Jun 07 2015