This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258683 #20 Mar 07 2020 12:39:00 %S A258683 1,0,0,0,2,16,120,938,8014,74060,748628,8163156,96429784 %N A258683 Total number of permutations on {1,2,...,n} that have a unique longest increasing subsequence and a unique longest decreasing subsequence. %C A258683 By definition, a(n) <= A167995(n). %H A258683 Manfred Scheucher, <a href="/A258683/a258683.c.txt">C Code</a> %e A258683 the two permutation of {1,2,...,5}: %e A258683 {2, 5, 3, 1, 4} %e A258683 {4, 1, 3, 5, 2} %e A258683 8 of the 16 permutations of {1,2,...,6} (others reversed): %e A258683 {1, 3, 6, 4, 2, 5} %e A258683 {1, 5, 2, 4, 6, 3} %e A258683 {2, 3, 6, 4, 1, 5} %e A258683 {2, 5, 3, 1, 4, 6} %e A258683 {2, 6, 3, 1, 4, 5} %e A258683 {2, 6, 5, 3, 1, 4} %e A258683 {3, 6, 4, 2, 1, 5} %e A258683 {3, 6, 4, 2, 5, 1} %o A258683 (Sage) %o A258683 def A258683(n): %o A258683 return len([p for p in permutations(n) if len(p.longest_increasing_subsequences())* len(p.reverse().longest_increasing_subsequences())==1]) %o A258683 # _Manfred Scheucher_, Jun 07 2015 %Y A258683 Cf. A167995, A167999, A168502. %K A258683 nonn,more %O A258683 1,5 %A A258683 _Manfred Scheucher_, Jun 07 2015