This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258706 #41 Sep 23 2024 10:11:16 %S A258706 2,3,5,7,11,13,17,37,79,113,199,337,1111111111111111111, %T A258706 11111111111111111111111 %N A258706 Absolute primes: every permutation of digits is a prime. Only the smallest representative of each permutation class is shown. %C A258706 See the main entry, A003459, for further information and references cited below. %C A258706 The next terms are the repunit primes (A004023) R(317), too large to be displayed here, and R(1031), too large even for a b-file. Johnson (1977) proves that subsequent terms must be of the form a*R(n) + b*10^k, with a and a+b in {1..9}, k < n, and n > 9*10^9 if b != 0. - _M. F. Hasler_, Jun 26 2018 %H A258706 M. F. Hasler, <a href="/A258706/b258706.txt">Table of n, a(n) for n = 1..15</a> %H A258706 James Grime and Brady Haran, <a href="https://www.youtube.com/watch?v=cmJ18ViCUAI">Absolute Primes</a>, YouTube Numberphile video, 2024. %t A258706 Flatten@{2, 3, 5, 7, %t A258706 Table[Select[ %t A258706 Table @@ %t A258706 Prepend[Prepend[ %t A258706 Table[{A@k, A[k - 1], 4}, {k, 2, n}], {A[1], 4}], %t A258706 Unevaluated[ %t A258706 Unevaluated[FromDigits[{1, 3, 7, 9}[[A /@ Range[n]]]]]]] // %t A258706 Flatten, %t A258706 Function[L, %t A258706 And[PrimeQ[#], %t A258706 And @@ PrimeQ[ %t A258706 FromDigits /@ (Permute[L, #] & /@ %t A258706 RandomPermutation[Length@L, 5])], %t A258706 And @@ PrimeQ[FromDigits /@ Rest[Permutations[L]]]]]@ %t A258706 IntegerDigits@# &], {n, 2, 33}]} %t A258706 (* Exhaustively searches thru 33 digits in ~7.5 sec, and up to 69 digits in 5 min, but cannot reach 317 digits. Not helpful in the light of Schroeppel's theorem that it's all repunits past 991. - _Bill Gosper_, Jan 06 2017 *) %o A258706 (Haskell) %o A258706 import Data.List (permutations, (\\)) %o A258706 a258706 n = a258706_list !! (n-1) %o A258706 a258706_list = f a000040_list where %o A258706 f ps'@(p:ps) | any (== 0) (map a010051' dps) = f ps %o A258706 | otherwise = p : f (ps' \\ dps) %o A258706 where dps = map read $ permutations $ show p %o A258706 -- _Reinhard Zumkeller_, Jun 10 2015 %o A258706 (PARI) %o A258706 {A=[2,5]; for(n=1, 317, my(D=[1,3,7,9], r=10^n\9); for(a=1,4, for(b=a^(n<3),4, for(j=0, if(b!=a,n-1), ispseudoprime(D[a]*r+(D[b]-D[a])*10^j)||next(2)); A=setunion(A, [r*D[a]+(D[b]-D[a])*10^if(b<a,n-1)])))); A} %o A258706 is(n)={(n=digits(n))[#n]>=n[1] && #select(d->d,n[^1]-n[^-1])<2 && !for(i=1,(#n)^(n[#n]>1), isprime(fromdigits(n=concat(n[^1],n[1])))||return)} \\ By Johnson's theorem and minimality required here, the number must be of the form ab...b or a...ab (=> first difference of digits has at most 1 nonzero component) and then is sufficient to consider rotations of the digits. %o A258706 \\ _M. F. Hasler_, Jun 26 2018 %Y A258706 Cf. A003459, A004023, A004022 (subsequence of repunit primes). %K A258706 nonn,base %O A258706 1,1 %A A258706 _N. J. A. Sloane_, Jun 09 2015