This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258712 #24 Feb 26 2019 19:11:37 %S A258712 1,1,2,4,4,1,1,2,3,0,3,3,1,0,4,2,2,4,2,4,4,4,3,0,2,1,1,2,4,4,1,1,2,3, %T A258712 0,3,3,1,0,4,2,2,4,2,4,4,4,3,4,3,3,3,1,2,2,3,3,1,4,0,4,4,3,0,2,1,1,2, %U A258712 1,2,2,2,4,3,3,2,2,4,3,3,2,2,4,1,0,1,1,2,0 %N A258712 Motzkin numbers A001006 read mod 5. %H A258712 Anders Hyllengren, <a href="/A258710/a258710.pdf">Letter to N. J. A. Sloane, Oct 04 1985</a> %t A258712 b = DifferenceRoot[Function[{b, n}, {3 (n + 1) b[n] + (2 n + 5) b[n + 1] == (n + 4) b[n + 2], b[0] == 1, b[1] == 1}]]; %t A258712 a[n_] := Mod[b[n], 5]; %t A258712 Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Feb 26 2019 *) %o A258712 (PARI) a001006(n) = polcoeff((1-x-sqrt((1-x)^2-4*x^2+x^3*O(x^n)))/(2*x^2), n); %o A258712 vector(200, n, n--; a001006(n) % 5) \\ _Altug Alkan_, Oct 23 2015 %Y A258712 Cf. A001006. %Y A258712 Motzkin numbers A001006 read mod 2,3,4,5,6,7,8,11: A039963, A039964, A299919, A258712, A299920, A258711, A299918, A258710. %K A258712 nonn %O A258712 0,3 %A A258712 _N. J. A. Sloane_, Jun 14 2015