A258716 Decimal expansion of 3 + 2*Sum_{k>=0} 1/Product_{i=0..k} (2^(2^i) - 1).
5, 7, 1, 1, 2, 8, 5, 4, 0, 5, 7, 0, 9, 6, 3, 3, 4, 4, 6, 6, 6, 6, 5, 2, 5, 4, 2, 9, 1, 8, 1, 4, 7, 9, 1, 0, 4, 6, 7, 9, 7, 6, 5, 8, 7, 7, 1, 9, 8, 9, 7, 5, 4, 5, 6, 9, 3, 7, 9, 5, 7, 1, 7, 0, 6, 7, 9, 5, 0, 1, 8, 9, 9, 9, 5, 5, 4, 4, 2, 8
Offset: 1
Examples
5.7112854057096334466665254291814791046797658771989754...
Links
- Gary W. Adamson and N. J. A. Sloane, Correspondence, May 1994, including Adamson's MSS "Algorithm for Generating nth Row of Pascal's Triangle, mod 2, from n", and "The Tower of Hanoi Wheel". Defines this number.
Programs
-
Mathematica
RealDigits[2/NProduct[1 - 1/2^(2^k), {k, 0, Infinity}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Feb 19 2024 *)
-
PARI
2/prodinf(k = 0, 1 - 1/2^(2^k)) \\ Amiram Eldar, Feb 19 2024
Formula
Equals 3 + A258715.
From Amiram Eldar, Feb 19 2024: (Start)
Equals 2 * A258714 + 3.
Equals 2/A215016. (End)