A258726 Number of length n+4 0..3 arrays with at most one downstep in every 4 consecutive neighbor pairs.
512, 1408, 4184, 12549, 35540, 98676, 281136, 819453, 2358888, 6678576, 18944656, 54386801, 156395364, 446683118, 1271579860, 3632749828, 10409795664, 29790138680, 85049570304, 242860722210, 694569186912, 1987109647472
Offset: 1
Keywords
Examples
Some solutions for n=4 ..3....3....3....0....1....0....1....0....1....0....2....0....3....1....0....2 ..3....1....3....0....1....0....0....2....0....0....1....1....0....1....2....3 ..1....1....3....1....2....2....0....3....2....0....1....2....0....0....0....0 ..2....2....2....3....3....2....0....0....2....0....2....2....0....2....0....1 ..2....2....2....3....1....2....0....0....2....1....3....0....1....2....0....3 ..2....1....3....0....2....2....2....0....2....3....3....0....2....2....0....3 ..1....1....3....3....2....1....0....0....1....1....3....1....2....0....3....1 ..2....3....2....3....3....2....1....3....2....2....1....1....3....0....1....1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A258730
Formula
Empirical: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) +30*a(n-4) -72*a(n-5) +58*a(n-6) -16*a(n-7) -31*a(n-8) +36*a(n-9) -10*a(n-10) +a(n-12)
Comments