cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A258725 Number of length n+3 0..3 arrays with at most one downstep in every 3 consecutive neighbor pairs.

Original entry on oeis.org

190, 608, 2028, 6552, 20955, 68120, 220854, 711432, 2300008, 7446144, 24054120, 77722752, 251353605, 812507404, 2625900876, 8488906820, 27442096806, 88701621392, 286727659260, 926874621576, 2996101722471, 9684839732128
Offset: 1

Views

Author

R. H. Hardin, Jun 08 2015

Keywords

Comments

Column 3 of A258730.

Examples

			Some solutions for n=4:
..2....0....2....0....1....0....0....2....3....0....3....1....0....0....1....0
..2....0....2....2....2....1....3....1....3....2....2....2....0....3....0....3
..0....3....0....2....2....0....0....2....1....0....3....2....1....1....1....0
..0....0....1....1....3....2....1....2....1....0....3....3....2....2....3....1
..2....0....1....3....0....3....1....2....2....1....3....2....3....2....3....1
..2....2....0....3....2....0....1....2....3....0....3....2....0....2....3....0
..2....1....2....0....3....0....0....3....2....0....0....2....3....0....0....0
		

Crossrefs

Cf. A258730.

Formula

Empirical: a(n) = 4*a(n-1) -6*a(n-2) +20*a(n-3) -34*a(n-4) +24*a(n-5) -16*a(n-6) +8*a(n-7) -a(n-8).
Empirical g.f.: x*(190 - 152*x + 736*x^2 - 1712*x^3 + 1215*x^4 - 836*x^5 + 464*x^6 - 60*x^7) / (1 - 4*x + 6*x^2 - 20*x^3 + 34*x^4 - 24*x^5 + 16*x^6 - 8*x^7 + x^8). - Colin Barker, Jan 26 2018

A258726 Number of length n+4 0..3 arrays with at most one downstep in every 4 consecutive neighbor pairs.

Original entry on oeis.org

512, 1408, 4184, 12549, 35540, 98676, 281136, 819453, 2358888, 6678576, 18944656, 54386801, 156395364, 446683118, 1271579860, 3632749828, 10409795664, 29790138680, 85049570304, 242860722210, 694569186912, 1987109647472
Offset: 1

Views

Author

R. H. Hardin, Jun 08 2015

Keywords

Comments

Column 4 of A258730

Examples

			Some solutions for n=4
..3....3....3....0....1....0....1....0....1....0....2....0....3....1....0....2
..3....1....3....0....1....0....0....2....0....0....1....1....0....1....2....3
..1....1....3....1....2....2....0....3....2....0....1....2....0....0....0....0
..2....2....2....3....3....2....0....0....2....0....2....2....0....2....0....1
..2....2....2....3....1....2....0....0....2....1....3....0....1....2....0....3
..2....1....3....0....2....2....2....0....2....3....3....0....2....2....0....3
..1....1....3....3....2....1....0....0....1....1....3....1....2....0....3....1
..2....3....2....3....3....2....1....3....2....2....1....1....3....0....1....1
		

Crossrefs

Formula

Empirical: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) +30*a(n-4) -72*a(n-5) +58*a(n-6) -16*a(n-7) -31*a(n-8) +36*a(n-9) -10*a(n-10) +a(n-12)

A258727 Number of length n+5 0..3 arrays with at most one downstep in every 5 consecutive neighbor pairs.

Original entry on oeis.org

1212, 2936, 7834, 21860, 59188, 149960, 370510, 941024, 2487276, 6650600, 17371025, 44270908, 112541478, 290771496, 762899717, 1998910152, 5175319416, 13289503784, 34202437664, 88756842476, 231356200114, 601422231744
Offset: 1

Views

Author

R. H. Hardin, Jun 08 2015

Keywords

Comments

Column 5 of A258730

Examples

			Some solutions for n=4
..0....1....1....0....1....0....1....3....3....2....1....1....1....3....3....1
..2....3....2....3....0....1....0....3....0....2....1....3....1....0....0....1
..0....0....0....3....2....3....0....3....0....2....0....0....1....0....0....2
..0....0....1....3....2....0....1....3....0....2....0....0....1....1....1....3
..0....1....1....0....3....0....1....1....0....2....1....1....0....3....1....1
..0....2....1....1....3....1....2....1....3....3....2....1....2....3....1....1
..2....3....3....1....0....2....0....2....1....0....3....3....2....0....1....1
..3....1....0....2....2....2....0....2....1....2....1....1....2....1....1....3
..0....1....3....3....2....3....2....2....3....3....1....1....3....2....3....3
		

Crossrefs

Formula

Empirical: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +52*a(n-5) -128*a(n-6) +108*a(n-7) -31*a(n-8) -68*a(n-10) +92*a(n-11) -31*a(n-12) +4*a(n-15) -a(n-16)

A258728 Number of length n+6 0..3 arrays with at most one downstep in every 6 consecutive neighbor pairs.

Original entry on oeis.org

2592, 5664, 13720, 35704, 92548, 228081, 526672, 1183616, 2727288, 6597449, 16454876, 40863000, 98379104, 230053160, 534172704, 1260245516, 3043544240, 7443617220, 18093595536, 43272115712, 102190186552, 241107878575
Offset: 1

Views

Author

R. H. Hardin, Jun 08 2015

Keywords

Comments

Column 6 of A258730

Examples

			Some solutions for n=4
..0....3....0....3....3....1....0....2....0....0....1....0....0....3....3....1
..3....3....0....3....3....2....1....0....3....2....1....2....2....3....1....2
..0....0....2....0....1....3....0....1....3....0....0....2....0....1....1....0
..0....2....3....0....1....3....0....2....3....0....0....2....0....1....2....1
..0....2....0....0....2....1....1....3....3....1....0....2....1....1....3....2
..0....2....0....1....2....1....2....3....3....1....3....1....2....1....3....2
..1....3....0....2....2....1....2....3....3....1....3....1....2....1....3....3
..3....3....2....2....3....1....3....3....0....1....3....1....3....1....0....3
..2....3....3....0....1....2....2....1....1....2....0....1....3....3....1....0
..2....3....3....1....3....3....3....3....2....2....1....1....0....1....1....2
		

Crossrefs

Formula

Empirical: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +80*a(n-6) -204*a(n-7) +177*a(n-8) -52*a(n-9) -125*a(n-12) +184*a(n-13) -68*a(n-14) +10*a(n-18) -4*a(n-19)

A258729 Number of length n+7 0..3 arrays with at most one downstep in every 7 consecutive neighbor pairs.

Original entry on oeis.org

5115, 10280, 22866, 55660, 138196, 331584, 752180, 1607656, 3343894, 7100132, 15867680, 37057120, 87647408, 203774064, 457583316, 996246248, 2145967651, 4684383672, 10501666108, 24080284440, 55579151729, 126886388888
Offset: 1

Views

Author

R. H. Hardin, Jun 08 2015

Keywords

Comments

Column 7 of A258730

Examples

			Some solutions for n=4
..0....3....1....1....1....2....3....1....2....0....3....1....3....1....2....0
..0....0....2....1....0....1....0....0....2....2....3....1....1....2....2....0
..3....1....2....0....0....1....0....1....2....2....0....1....2....0....2....2
..1....1....1....0....1....1....0....1....2....1....0....1....2....0....1....2
..1....2....2....0....2....2....0....1....3....1....0....0....2....0....1....0
..1....2....2....2....2....2....0....3....3....1....2....0....2....0....2....1
..1....2....2....2....3....2....0....3....0....1....2....0....2....0....2....2
..2....2....2....2....3....2....2....3....1....2....3....0....3....0....2....2
..2....3....2....2....2....2....2....2....3....3....3....2....0....1....3....2
..3....3....3....2....2....3....3....2....3....3....3....3....0....0....3....2
..2....0....1....0....3....1....3....3....3....0....1....3....1....0....0....3
		

Crossrefs

Formula

Empirical: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +116*a(n-7) -303*a(n-8) +268*a(n-9) -80*a(n-10) -206*a(n-14) +320*a(n-15) -125*a(n-16) +20*a(n-21) -10*a(n-22)

A258731 Number of length n+1 0..3 arrays with at most one downstep in every n consecutive neighbor pairs.

Original entry on oeis.org

16, 60, 190, 512, 1212, 2592, 5115, 9460, 16588, 27820, 44928, 70240, 106760, 158304, 229653, 326724, 456760, 628540, 852610, 1141536, 1510180, 1976000, 2559375, 3283956, 4177044, 5269996, 6598660, 8203840, 10131792, 12434752, 15171497
Offset: 1

Views

Author

R. H. Hardin, Jun 08 2015

Keywords

Comments

Row 1 of A258730.

Examples

			Some solutions for n=4:
..3....1....0....1....0....0....2....1....3....0....0....1....1....1....3....3
..3....3....1....2....0....0....3....2....0....2....2....2....1....1....0....3
..2....3....0....2....0....0....1....0....0....0....2....3....2....1....1....1
..2....1....3....2....2....2....2....1....1....0....3....1....3....3....1....3
..2....1....3....2....1....2....3....1....1....1....3....2....3....0....2....3
		

Crossrefs

Cf. A258730.

Formula

Empirical: a(n) = (1/5040)*n^7 + (1/144)*n^6 + (73/720)*n^5 + (91/144)*n^4 + (179/90)*n^3 + (139/36)*n^2 + (568/105)*n + 4.
Empirical g.f.: x*(2 - x)*(8 - 30*x + 64*x^2 - 80*x^3 + 58*x^4 - 23*x^5 + 4*x^6) / (1 - x)^8. - Colin Barker, Jan 26 2018

A258732 Number of length n+2 0..3 arrays with at most one downstep in every n consecutive neighbor pairs.

Original entry on oeis.org

64, 225, 608, 1408, 2936, 5664, 10280, 17754, 29416, 47047, 72984, 110240, 162640, 234974, 333168, 464474, 637680, 863341, 1154032, 1524624, 1992584, 2578300, 3305432, 4201290, 5297240, 6629139, 8237800, 10169488, 12476448, 15217466
Offset: 1

Views

Author

R. H. Hardin, Jun 08 2015

Keywords

Comments

Row 2 of A258730.

Examples

			Some solutions for n=4:
..0....2....2....1....1....0....2....1....3....0....2....0....1....1....0....1
..0....2....2....1....0....0....3....2....0....2....3....0....1....1....2....1
..1....3....2....2....1....3....1....3....1....2....3....3....3....2....2....3
..2....3....2....3....1....0....1....1....1....1....0....2....0....2....3....0
..1....3....3....0....1....1....2....1....2....2....1....3....0....0....3....1
..3....0....0....0....0....2....3....1....2....3....3....3....0....0....0....3
		

Crossrefs

Cf. A258730.

Formula

Empirical: a(n) = (1/5040)*n^7 + (1/120)*n^6 + (53/360)*n^5 + (5/4)*n^4 + (5167/720)*n^3 + (2489/120)*n^2 + (2591/105)*n + 10.
Empirical g.f.: x*(64 - 287*x + 600*x^2 - 740*x^3 + 576*x^4 - 282*x^5 + 80*x^6 - 10*x^7) / (1 - x)^8. - Colin Barker, Jan 26 2018

A258733 Number of length n+3 0..3 arrays with at most one downstep in every n consecutive neighbor pairs.

Original entry on oeis.org

256, 840, 2028, 4184, 7834, 13720, 22866, 36656, 56925, 86064, 127140, 184032, 261584, 365776, 503914, 684840, 919163, 1219512, 1600812, 2080584, 2679270, 3420584, 4331890, 5444608, 6794649, 8422880, 10375620, 12705168, 15470364
Offset: 1

Views

Author

R. H. Hardin, Jun 08 2015

Keywords

Examples

			Some solutions for n=4:
..3....0....0....2....3....1....1....1....1....0....0....0....3....2....0....0
..0....3....0....2....2....0....3....1....1....0....0....2....2....1....1....2
..0....3....2....2....2....1....2....2....1....0....0....2....2....2....1....3
..1....3....2....0....2....1....2....3....2....2....1....2....2....3....1....3
..2....1....0....1....3....1....2....3....0....2....1....3....2....3....0....3
..2....1....0....1....0....2....2....3....0....0....1....0....0....0....2....1
..2....3....2....3....1....2....0....1....1....0....3....2....3....3....3....2
		

Crossrefs

Row 3 of A258730.

Formula

Empirical: a(n) = (1/5040)*n^7 + (7/720)*n^6 + (29/144)*n^5 + (305/144)*n^4 + (1027/45)*n^3 + (16267/180)*n^2 + (2425/21)*n + 24 for n>1.
Empirical g.f.: x*(256 - 1208*x + 2476*x^2 - 2856*x^3 + 2026*x^4 - 904*x^5 + 242*x^6 - 32*x^7 + x^8) / (1 - x)^8. - Colin Barker, Jan 26 2018

A258734 Number of length n+4 0..3 arrays with at most one downstep in every n consecutive neighbor pairs.

Original entry on oeis.org

1024, 3136, 6552, 12549, 21860, 35704, 55660, 83758, 122584, 175400, 246280, 340263, 463524, 623564, 829420, 1091896, 1423816, 1840300, 2359064, 3000745, 3789252, 4752144, 5921036, 7332034, 9026200, 11050048, 13456072, 16303307
Offset: 1

Views

Author

R. H. Hardin, Jun 08 2015

Keywords

Comments

Row 4 of A258730.

Examples

			Some solutions for n=4:
..2....1....3....0....1....0....0....0....0....3....0....2....1....2....2....2
..1....3....3....2....1....2....2....1....0....3....0....2....0....3....3....0
..2....0....2....0....0....0....3....3....1....0....3....2....1....0....0....0
..2....0....2....2....1....0....0....0....1....0....1....2....2....2....1....0
..3....0....2....2....1....1....0....0....0....0....2....2....2....2....2....1
..0....3....3....2....2....1....0....1....1....0....2....2....3....2....2....1
..1....2....3....1....2....1....3....1....1....2....3....3....0....1....2....1
..3....3....2....1....3....3....0....2....2....1....1....1....2....1....0....1
		

Crossrefs

Cf. A258730.

Formula

Empirical: a(n) = (1/5040)*n^7 + (1/90)*n^6 + (19/72)*n^5 + (59/18)*n^4 + (47527/720)*n^3 + (14522/45)*n^2 + (39961/84)*n + 100 for n>2.
Empirical g.f.: x*(1024 - 5056*x + 10136*x^2 - 9403*x^3 + 988*x^4 + 7460*x^5 - 8940*x^6 + 5164*x^7 - 1576*x^8 + 204*x^9) / (1 - x)^8. - Colin Barker, Jan 26 2018

A258735 Number of length n+5 0..3 arrays with at most one downstep in every n consecutive neighbor pairs.

Original entry on oeis.org

4096, 11704, 20955, 35540, 59188, 92548, 138196, 199264, 279560, 383704, 517281, 687012, 900944, 1168660, 1501510, 1912864, 2418388, 3036344, 3787915, 4697556, 5793372, 7107524, 8676664, 10542400, 12751792, 15357880, 18420245, 22005604
Offset: 1

Views

Author

R. H. Hardin, Jun 08 2015

Keywords

Comments

Row 5 of A258730.

Examples

			Some solutions for n=4:
..0....0....3....3....1....0....3....0....1....0....1....2....1....0....2....1
..0....0....2....3....3....2....3....0....3....0....2....2....1....0....1....1
..0....2....2....3....3....1....2....0....3....0....1....1....1....0....2....0
..1....2....2....0....0....1....2....0....0....0....1....1....1....0....2....0
..1....0....2....1....1....2....2....1....0....2....1....1....3....3....2....2
..2....1....3....1....3....2....3....1....2....0....2....1....3....2....3....3
..2....2....3....2....3....2....1....1....3....0....0....2....3....2....3....1
..2....2....0....1....1....2....1....1....0....0....1....0....3....2....0....2
..0....2....1....3....1....0....2....2....0....0....2....3....1....3....3....3
		

Crossrefs

Cf. A258730.

Formula

Empirical: a(n) = (1/5040)*n^7 + (1/80)*n^6 + (241/720)*n^5 + (229/48)*n^4 + (15569/90)*n^3 + (58693/60)*n^2 + (175526/105)*n + 512 for n>3.
Empirical g.f.: x*(4096 - 21064*x + 42011*x^2 - 33764*x^3 - 7096*x^4 + 30588*x^5 - 9050*x^6- 20224*x^7 + 22372*x^8 - 9344*x^9 + 1476*x^10) / (1 - x)^8. - Colin Barker, Jan 26 2018
Showing 1-10 of 12 results. Next