A258733 Number of length n+3 0..3 arrays with at most one downstep in every n consecutive neighbor pairs.
256, 840, 2028, 4184, 7834, 13720, 22866, 36656, 56925, 86064, 127140, 184032, 261584, 365776, 503914, 684840, 919163, 1219512, 1600812, 2080584, 2679270, 3420584, 4331890, 5444608, 6794649, 8422880, 10375620, 12705168, 15470364
Offset: 1
Keywords
Examples
Some solutions for n=4: ..3....0....0....2....3....1....1....1....1....0....0....0....3....2....0....0 ..0....3....0....2....2....0....3....1....1....0....0....2....2....1....1....2 ..0....3....2....2....2....1....2....2....1....0....0....2....2....2....1....3 ..1....3....2....0....2....1....2....3....2....2....1....2....2....3....1....3 ..2....1....0....1....3....1....2....3....0....2....1....3....2....3....0....3 ..2....1....0....1....0....2....2....3....0....0....1....0....0....0....2....1 ..2....3....2....3....1....2....0....1....1....0....3....2....3....3....3....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 3 of A258730.
Formula
Empirical: a(n) = (1/5040)*n^7 + (7/720)*n^6 + (29/144)*n^5 + (305/144)*n^4 + (1027/45)*n^3 + (16267/180)*n^2 + (2425/21)*n + 24 for n>1.
Empirical g.f.: x*(256 - 1208*x + 2476*x^2 - 2856*x^3 + 2026*x^4 - 904*x^5 + 242*x^6 - 32*x^7 + x^8) / (1 - x)^8. - Colin Barker, Jan 26 2018