A258734 Number of length n+4 0..3 arrays with at most one downstep in every n consecutive neighbor pairs.
1024, 3136, 6552, 12549, 21860, 35704, 55660, 83758, 122584, 175400, 246280, 340263, 463524, 623564, 829420, 1091896, 1423816, 1840300, 2359064, 3000745, 3789252, 4752144, 5921036, 7332034, 9026200, 11050048, 13456072, 16303307
Offset: 1
Keywords
Examples
Some solutions for n=4: ..2....1....3....0....1....0....0....0....0....3....0....2....1....2....2....2 ..1....3....3....2....1....2....2....1....0....3....0....2....0....3....3....0 ..2....0....2....0....0....0....3....3....1....0....3....2....1....0....0....0 ..2....0....2....2....1....0....0....0....1....0....1....2....2....2....1....0 ..3....0....2....2....1....1....0....0....0....0....2....2....2....2....2....1 ..0....3....3....2....2....1....0....1....1....0....2....2....3....2....2....1 ..1....2....3....1....2....1....3....1....1....2....3....3....0....1....2....1 ..3....3....2....1....3....3....0....2....2....1....1....1....2....1....0....1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A258730.
Formula
Empirical: a(n) = (1/5040)*n^7 + (1/90)*n^6 + (19/72)*n^5 + (59/18)*n^4 + (47527/720)*n^3 + (14522/45)*n^2 + (39961/84)*n + 100 for n>2.
Empirical g.f.: x*(1024 - 5056*x + 10136*x^2 - 9403*x^3 + 988*x^4 + 7460*x^5 - 8940*x^6 + 5164*x^7 - 1576*x^8 + 204*x^9) / (1 - x)^8. - Colin Barker, Jan 26 2018
Comments