This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258737 #7 Jan 26 2018 08:36:20 %S A258737 65536,163020,220854,281136,370510,526672,752180,1038256,1394568, %T A258737 1831920,2362442,2999800,3759427,4658776,5717596,6958232,8405950, %U A258737 10089288,12040434,14295632,16895617,19886080,23318164,27248992,31742228,36868672 %N A258737 Number of length n+7 0..3 arrays with at most one downstep in every n consecutive neighbor pairs. %C A258737 Row 7 of A258730. %H A258737 R. H. Hardin, <a href="/A258737/b258737.txt">Table of n, a(n) for n = 1..210</a> %F A258737 Empirical: a(n) = (1/5040)*n^7 + (11/720)*n^6 + (361/720)*n^5 + (1285/144)*n^4 + (40822/45)*n^3 + (1121411/180)*n^2 + (480457/35)*n + 7848 for n>5. %F A258737 Empirical g.f.: x*(65536 - 361268*x + 751702*x^2 - 591152*x^3 - 236266*x^4 + 807960*x^5 - 664864*x^6 + 371040*x^7 - 206700*x^8 + 10940*x^9 + 117664*x^10 - 82072*x^11 + 17481*x^12) / (1 - x)^8. - _Colin Barker_, Jan 26 2018 %e A258737 Some solutions for n=2: %e A258737 ..0....0....1....0....1....1....0....0....1....0....1....0....1....1....1....2 %e A258737 ..3....1....0....1....0....2....0....1....0....3....0....2....1....2....3....0 %e A258737 ..3....0....1....2....0....1....2....1....2....1....2....0....2....0....1....0 %e A258737 ..1....0....1....1....1....3....3....0....1....3....0....3....2....3....1....3 %e A258737 ..1....0....3....2....0....0....0....3....3....1....0....2....0....3....0....1 %e A258737 ..1....1....3....0....3....1....0....3....2....1....0....3....0....3....0....3 %e A258737 ..3....1....1....0....3....2....2....2....3....1....2....0....0....3....3....1 %e A258737 ..3....2....1....0....0....0....2....3....3....1....3....3....1....1....0....2 %e A258737 ..1....0....2....0....3....3....1....3....3....3....3....3....1....3....1....3 %Y A258737 Cf. A258730. %K A258737 nonn %O A258737 1,1 %A A258737 _R. H. Hardin_, Jun 08 2015