This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258750 #8 Apr 06 2024 13:44:18 %S A258750 5,6,6,4,5,5,9,7,0,4,2,4,4,6,1,8,3,9,0,8,0,5,2,1,3,6,8,9,8,7,8,8,1,4, %T A258750 2,3,2,2,5,1,8,4,5,5,5,9,1,9,4,9,7,9,9,4,6,3,7,4,4,2,9,8,6,4,3,2,6,8, %U A258750 3,1,9,8,2,5,3,9,7,5,0,4,9,7,6,7,8,5,1,7,6,3,3,9,9,8,9,3,8,0,5,9,8,1,8,8,5 %N A258750 Decimal expansion of Ls_4(Pi), the value of the 4th basic generalized log-sine integral at Pi. %H A258750 Jonathan M. Borwein, Armin Straub, <a href="https://carmamaths.org/resources/jon/logsin3.pdf">Special Values of Generalized Log-sine Integrals</a>. %F A258750 -Integral_{0..Pi} log(2*sin(t/2))^3 dx = (3/2)*Pi*zeta(3). %F A258750 Also equals 3rd derivative of -Pi*binomial(x, x/2) at x=0. %e A258750 5.6645597042446183908052136898788142322518455591949799463744298643... %t A258750 RealDigits[(3/2)*Pi*Zeta[3], 10, 105] // First %Y A258750 Cf. A258749 (Ls_3(Pi)), A258751 (Ls_5(Pi)), A258752 (Ls_6(Pi)), A258753 (Ls_7(Pi)), A258754 (Ls_8(Pi)). %K A258750 nonn,cons,easy %O A258750 1,1 %A A258750 _Jean-François Alcover_, Jun 09 2015