This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258755 #26 Jun 10 2016 10:37:58 %S A258755 29790,37530,46002,46050,47502,52290,61110 %N A258755 The magic constants of most-perfect magic squares of order 6 composed of distinct prime numbers. %C A258755 A magic square of order n = 2k is most-perfect if the following two conditions hold: (i) every 2 X 2 subsquare (including wrap-around) sums to 2T; and (ii) any pair of elements at distance k along a diagonal or a skew diagonal sums to T, where T = S/k, S is the magic constant. %C A258755 All most-perfect magic squares are pandiagonal. %C A258755 All pandiagonal magic squares of order 4 are most-perfect. %C A258755 The magic constants of most-perfect magic squares of order 4 composed of distinct primes see A191533. %C A258755 The minimal magic constant of most-perfect magic square of order 6 composed of distinct primes corresponds to a(1) = 29790, see A258082. %C A258755 The seven terms shown have been verified by exhaustive search. - _Natalia Makarova_, Jun 09 2016 %H A258755 Discussion at the scientific forum dxdy.ru, <a href="http://dxdy.ru/post976822.html#p976822">Magic squares</a> (in Russian). %H A258755 N. Makarova, <a href="http://www.primepuzzles.net/puzzles/puzz_671.htm">Puzzle 671: Most Perfect Magic Squares</a>, Prime Puzzles & Problems. %H A258755 N. Makarova, <a href="/A258755/a258755.txt">Most-perfect magic squares of order 6</a> %H A258755 Wikipedia, <a href="http://en.wikipedia.org/wiki/Most-perfect_magic_square">Most-perfect magic square</a> %e A258755 a(2) = 37530 corresponds to the following most-perfect magic square: %e A258755 4919 9181 4049 6151 7949 5281 %e A258755 9293 1627 10163 4657 6263 5527 %e A258755 3833 10267 2963 7237 6863 6367 %e A258755 6359 4561 7229 7591 3329 8461 %e A258755 7853 6247 6983 3217 10883 2347 %e A258755 5273 5647 6143 8677 2243 9547 %e A258755 a(3) = 46002 corresponds to the following most-perfect magic square: %e A258755 6053 14321 2417 6473 13901 2837 %e A258755 10061 233 13697 8081 2213 11717 %e A258755 5483 14891 1847 7043 13331 3407 %e A258755 8861 1433 12497 9281 1013 12917 %e A258755 7253 13121 3617 5273 15101 1637 %e A258755 8291 2003 11927 9851 443 13487 %Y A258755 Cf. A191533, A258082. %K A258755 nonn,more %O A258755 1,1 %A A258755 _Natalia Makarova_, Jun 09 2015