A258761 Decimal expansion of Ls_5(Pi/3), the value of the 5th basic generalized log-sine integral at Pi/3 (negated).
2, 4, 0, 1, 2, 5, 3, 3, 1, 2, 5, 5, 1, 6, 9, 1, 4, 6, 1, 5, 0, 1, 5, 7, 1, 3, 9, 6, 3, 6, 3, 1, 6, 2, 6, 7, 9, 5, 0, 2, 8, 8, 4, 8, 4, 1, 0, 6, 4, 6, 3, 1, 5, 0, 2, 1, 9, 0, 1, 6, 2, 0, 7, 8, 2, 3, 3, 9, 2, 9, 9, 8, 2, 1, 7, 6, 3, 6, 8, 1, 4, 4, 4, 7, 2, 8, 9, 5, 8, 5, 8, 6, 4, 9, 1, 9, 0, 0, 1, 6, 3, 5, 2
Offset: 2
Examples
-24.01253312551691461501571396363162679502884841064631502190162...
Links
- Jonathan M. Borwein, Armin Straub, Special Values of Generalized Log-sine Integrals.
Crossrefs
Programs
-
Mathematica
RealDigits[-24*HypergeometricPFQ[Table[1/2, {6}], Table[3/2, {5}], 1/4], 10, 103] // First
Formula
-Integral_{0..Pi/3} log(2*sin(x/2))^4 dx = -1543*Pi^5/19440 + 6*Gl_{4, 1}(Pi/3), where Gl is the multiple Glaisher function.
Also equals -24 * 6F5(1/2,1/2,1/2,1/2,1/2,1/2; 3/2,3/2,3/2,3/2,3/2; 1/4) (with 6F5 the hypergeometric function).