A258762 Decimal expansion of Ls_6(Pi/3), the value of the 6th basic generalized log-sine integral at Pi/3.
1, 2, 0, 0, 2, 0, 7, 6, 1, 3, 7, 1, 0, 5, 5, 3, 0, 0, 1, 7, 5, 5, 0, 4, 8, 8, 8, 6, 3, 9, 1, 9, 2, 7, 6, 1, 4, 8, 3, 4, 4, 8, 9, 2, 5, 0, 4, 4, 3, 0, 1, 4, 6, 8, 9, 8, 2, 1, 6, 8, 9, 5, 1, 9, 4, 6, 3, 0, 4, 8, 6, 4, 0, 9, 9, 9, 5, 5, 0, 2, 0, 4, 5, 3, 8, 2, 5, 4, 6, 2, 8, 5, 3, 2, 9, 8, 2, 0, 6, 3, 7, 2, 5
Offset: 3
Examples
120.0207613710553001755048886391927614834489250443014689821689519463 ...
Links
- Jonathan M. Borwein, Armin Straub, Special Values of Generalized Log-sine Integrals.
Crossrefs
Programs
-
Mathematica
RealDigits[120* HypergeometricPFQ[Table[1/2, {7}], Table[3/2, {6}], 1/4], 10, 103] // First
Formula
-Integral_{0..Pi/3} log(2*sin(x/2))^5 dx = (15/2)*Pi*zeta(5) + (35/36)*Pi^3*zeta(3) - (135/4)*Im(-PolyLog(6, (-1)^(1/3)) + PolyLog(6, -(-1)^(2/3))).
Also equals 120 * 7F6(1/2,1/2,...; 3/2,3/2,...; 1/4) (with 7F6 the hypergeometric function).