cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A258759 Decimal expansion of Ls_3(Pi/3), the value of the 3rd basic generalized log-sine integral at Pi/3 (negated).

Original entry on oeis.org

2, 0, 0, 9, 6, 6, 6, 0, 8, 1, 1, 3, 0, 5, 4, 3, 9, 0, 0, 2, 6, 2, 3, 5, 3, 7, 5, 4, 3, 4, 9, 1, 6, 4, 5, 0, 3, 8, 4, 7, 9, 3, 5, 3, 7, 0, 0, 1, 1, 0, 7, 1, 7, 9, 4, 9, 9, 0, 8, 4, 9, 6, 9, 1, 9, 1, 3, 3, 7, 7, 4, 4, 8, 3, 5, 4, 2, 5, 8, 7, 2, 4, 6, 5, 7, 1, 0, 0, 9, 9, 2, 8, 5, 3, 8, 9, 0, 7, 7, 1, 7, 7, 0, 4, 7
Offset: 1

Views

Author

Jean-François Alcover, Jun 09 2015

Keywords

Examples

			-2.0096660811305439002623537543491645038479353700110717949908496919...
		

Crossrefs

Cf. A258749 (Ls_3(Pi)), A258750 (Ls_4(Pi)), A258751 (Ls_5(Pi)), A258752 (Ls_6(Pi)), A258753 (Ls_7(Pi)), A258754 (Ls_8(Pi)).
Cf. A143298 (Ls_2(Pi/3)), A258760 (Ls_4(Pi/3)), A258761 (Ls_5(Pi/3)), A258762 (Ls_6(Pi/3)), A258763 (Ls_7(Pi/3)).

Programs

  • Mathematica
    RealDigits[-7*Pi^3/108, 10, 105] // First

Formula

-Integral_{0..Pi/3} log(2*sin(x/2))^2 dx = -7*Pi^3/108.

A258760 Decimal expansion of Ls_4(Pi/3), the value of the 4th basic generalized log-sine integral at Pi/3.

Original entry on oeis.org

6, 0, 0, 9, 4, 9, 7, 5, 4, 9, 8, 1, 8, 8, 8, 8, 9, 1, 6, 2, 0, 4, 7, 8, 8, 7, 0, 6, 2, 0, 3, 2, 7, 0, 7, 4, 0, 5, 9, 6, 9, 6, 3, 2, 9, 7, 4, 3, 9, 5, 6, 8, 4, 1, 8, 8, 3, 6, 0, 6, 3, 9, 2, 6, 7, 5, 1, 5, 1, 0, 0, 4, 2, 0, 0, 2, 8, 0, 2, 2, 5, 2, 6, 8, 7, 6, 2, 3, 8, 6, 2, 3, 6, 9, 0, 5, 6, 6, 3, 5, 9, 3, 0, 5, 3
Offset: 1

Views

Author

Jean-François Alcover, Jun 09 2015

Keywords

Examples

			6.00949754981888891620478870620327074059696329743956841883606392675151...
		

Crossrefs

Cf. A258749 (Ls_3(Pi)), A258750 (Ls_4(Pi)), A258751 (Ls_5(Pi)), A258752 (Ls_6(Pi)), A258753 (Ls_7(Pi)), A258754 (Ls_8(Pi)).
Cf. A143298 (Ls_2(Pi/3)), A258759 (Ls_3(Pi/3)), A258761 (Ls_5(Pi/3)), A258762 (Ls_6(Pi/3)), A258763 (Ls_7(Pi/3)).

Programs

  • Mathematica
    RealDigits[(1/2)*Pi*Zeta[3] + (9/4)*Im[ PolyLog[4, (-1)^(1/3)] - PolyLog[4, -(-1)^(2/3)]], 10, 105] // First

Formula

-Integral_{0..Pi/3} log(2*sin(x/2))^3 dx = (1/2)*Pi*zeta(3) + (9/4)*im( PolyLog(4, (-1)^(1/3)) - PolyLog(4, -(-1)^(2/3))).
Also equals 6 * 5F4(1/2,1/2,1/2,1/2,1/2; 3/2,3/2,3/2,3/2; 1/4) (with 5F4 the hypergeometric function).

A258761 Decimal expansion of Ls_5(Pi/3), the value of the 5th basic generalized log-sine integral at Pi/3 (negated).

Original entry on oeis.org

2, 4, 0, 1, 2, 5, 3, 3, 1, 2, 5, 5, 1, 6, 9, 1, 4, 6, 1, 5, 0, 1, 5, 7, 1, 3, 9, 6, 3, 6, 3, 1, 6, 2, 6, 7, 9, 5, 0, 2, 8, 8, 4, 8, 4, 1, 0, 6, 4, 6, 3, 1, 5, 0, 2, 1, 9, 0, 1, 6, 2, 0, 7, 8, 2, 3, 3, 9, 2, 9, 9, 8, 2, 1, 7, 6, 3, 6, 8, 1, 4, 4, 4, 7, 2, 8, 9, 5, 8, 5, 8, 6, 4, 9, 1, 9, 0, 0, 1, 6, 3, 5, 2
Offset: 2

Views

Author

Jean-François Alcover, Jun 09 2015

Keywords

Examples

			-24.01253312551691461501571396363162679502884841064631502190162...
		

Crossrefs

Cf. A258749 (Ls_3(Pi)), A258750 (Ls_4(Pi)), A258751 (Ls_5(Pi)), A258752 (Ls_6(Pi)), A258753 (Ls_7(Pi)), A258754 (Ls_8(Pi)).
Cf. A143298 (Ls_2(Pi/3)), A258759 (Ls_3(Pi/3)), A258760 (Ls_4(Pi/3)), A258762 (Ls_6(Pi/3)), A258763 (Ls_7(Pi/3)).

Programs

  • Mathematica
    RealDigits[-24*HypergeometricPFQ[Table[1/2, {6}], Table[3/2, {5}], 1/4], 10, 103] // First

Formula

-Integral_{0..Pi/3} log(2*sin(x/2))^4 dx = -1543*Pi^5/19440 + 6*Gl_{4, 1}(Pi/3), where Gl is the multiple Glaisher function.
Also equals -24 * 6F5(1/2,1/2,1/2,1/2,1/2,1/2; 3/2,3/2,3/2,3/2,3/2; 1/4) (with 6F5 the hypergeometric function).

A258762 Decimal expansion of Ls_6(Pi/3), the value of the 6th basic generalized log-sine integral at Pi/3.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 7, 6, 1, 3, 7, 1, 0, 5, 5, 3, 0, 0, 1, 7, 5, 5, 0, 4, 8, 8, 8, 6, 3, 9, 1, 9, 2, 7, 6, 1, 4, 8, 3, 4, 4, 8, 9, 2, 5, 0, 4, 4, 3, 0, 1, 4, 6, 8, 9, 8, 2, 1, 6, 8, 9, 5, 1, 9, 4, 6, 3, 0, 4, 8, 6, 4, 0, 9, 9, 9, 5, 5, 0, 2, 0, 4, 5, 3, 8, 2, 5, 4, 6, 2, 8, 5, 3, 2, 9, 8, 2, 0, 6, 3, 7, 2, 5
Offset: 3

Views

Author

Jean-François Alcover, Jun 09 2015

Keywords

Examples

			120.0207613710553001755048886391927614834489250443014689821689519463 ...
		

Crossrefs

Cf. A258749 (Ls_3(Pi)), A258750 (Ls_4(Pi)), A258751 (Ls_5(Pi)), A258752 (Ls_6(Pi)), A258753 (Ls_7(Pi)), A258754 (Ls_8(Pi)).
Cf. A143298 (Ls_2(Pi/3)), A258759 (Ls_3(Pi/3)), A258760 (Ls_4(Pi/3)), A258761 (Ls_5(Pi/3)), A258763 (Ls_7(Pi/3)).

Programs

  • Mathematica
    RealDigits[120* HypergeometricPFQ[Table[1/2, {7}], Table[3/2, {6}], 1/4], 10, 103] // First

Formula

-Integral_{0..Pi/3} log(2*sin(x/2))^5 dx = (15/2)*Pi*zeta(5) + (35/36)*Pi^3*zeta(3) - (135/4)*Im(-PolyLog(6, (-1)^(1/3)) + PolyLog(6, -(-1)^(2/3))).
Also equals 120 * 7F6(1/2,1/2,...; 3/2,3/2,...; 1/4) (with 7F6 the hypergeometric function).
Showing 1-4 of 4 results.