This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258766 #21 Jul 26 2024 22:09:19 %S A258766 1,2,3,26,32,34,37,49,55,62,64,74,75,76,77,164,171,189,224,273,279, %T A258766 280,285,303,333,345,356,363,368,382,399,411,416,422,429,430,435,441, %U A258766 453,470,472,483,494,524,539,561,566,579,580,585,603,609,621,644,662,666,674,693,704,715,737,771,777,794,803 %N A258766 Fixed points in A256271. %C A258766 Numbers n such that A256271(n) = n. %C A258766 From _Robert Israel_, Jul 16 2019: (Start) %C A258766 A necessary condition for n to be in the sequence is that A256271(n)-n is even. When A256271(n) is even, A256271(n+1) must be odd; when A256271(n) is odd, A256271(n+1) may be either even or odd, but it appears that it is nearly always even. %C A258766 The result is that we have long intervals where A256271(n)-n is even (e.g. 3369 to 22635), in which members of this sequence are relatively common, and long intervals where A256271(n)-n is odd (e.g. 22636 to 67110) which contain no members of this sequence. (End) %H A258766 Robert Israel, <a href="/A258766/b258766.txt">Table of n, a(n) for n = 1..1000</a> %p A258766 Res:= 1: count:= 1: v:= 1: %p A258766 Cands:= [$2..1000]: %p A258766 for n from 2 do %p A258766 found:= false; %p A258766 for j from 1 to nops(Cands) do %p A258766 if numtheory:-issqrfree(v + Cands[j]^2) then %p A258766 found:= true; %p A258766 if n = Cands[j] then Res:= Res, n; count:= count+1 fi; %p A258766 v:= Cands[j]^2; %p A258766 Cands:= subsop(j=NULL, Cands); %p A258766 break %p A258766 fi %p A258766 od; %p A258766 if not found then break fi; %p A258766 od: %p A258766 Res; # _Robert Israel_, Jul 16 2019 %o A258766 (PARI) print1(1,", ");v=[1]; n=1; while(#v<10^3, if(issquarefree(n^2+v[#v]^2)&&!vecsearch(vecsort(v), n), if(n==#v, print1(n, ", ")); n=0); n++) %Y A258766 Cf. A121878, A167906, A256271. %K A258766 nonn,look %O A258766 1,2 %A A258766 _Derek Orr_, Jun 09 2015