This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258777 #36 Feb 16 2025 08:33:25 %S A258777 1,3,4,5,6,7,8,9,10,12,13,14,15,17,18,20,21,24,26,28,30,31,32,33,38, %T A258777 40,42,44,48,50,54,57,60,62,63,65,68,72,73,74,80,82,84,85,90,91,98, %U A258777 102,104,108,110,114,121,122,126,127,128,129,132,133,138,140,150,152,156,158,164,168,170,174,180,182,183,192,194,198,200 %N A258777 Number of points of projective spaces on finite fields. %C A258777 List of integers of form (p^(k*n) - 1)/(p^k - 1) = sigma_k(p^(n-1)) = sum of d^k over all divisors d of p^(n-1), for some prime p and some positive integers k and n. The cardinality of the field is p^k and the dimension of the space is n-1. %C A258777 In other words, numbers that are a repunit in at least one base that is a prime power (A246655). - _Peter Munn_, Oct 21 2020 %H A258777 Charles R Greathouse IV, <a href="/A258777/b258777.txt">Table of n, a(n) for n = 1..10000</a> %H A258777 Pierre-Emmanuel Caprace, Pierre de la Harpe, <a href="https://arxiv.org/abs/1807.04992">Groups with irreducibly unfaithful subsets for unitary representations</a>, arXiv:1807.04992 [math.GR], 2018. %H A258777 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Repunit.html">Repunit</a> %e A258777 7 = (2^(1*3) - 1)/(2^1 - 1) so 7 is in the sequence. 10 = (3^(2*2) - 1)/(3^2 - 1) so 10 is in the sequence. %t A258777 max = 200; Join[{1}, Select[{#, DivisorSigma[Range[Max[1, Log[#, max] // Floor]], #]}& /@ Range[2, max], PrimePowerQ[#[[1]]]&][[All, 2]] // Flatten // Union] // Select[#, # <= max&]& (* _Jean-François Alcover_, Jun 24 2015 after _Giovanni Resta_ *) %o A258777 (PARI) list(lim)=my(v=List([1]),t); lim\=1; if(lim<2,lim=2); for(k=1,logint(lim - 1, 2), for(n=2,logint(lim*(2^k - 1) + 1, 2)\k, forprime(p=2,, t=(p^(k*n) - 1)/(p^k - 1); if(t>lim,break); listput(v,t)))); Set(v) \\ _Charles R Greathouse IV_, Jun 24 2015 %Y A258777 Union of 1, A090503 and (A246655 + 1). %Y A258777 Subsequence of A211347. %Y A258777 Cf. A001231, A246655. %K A258777 nonn,nice %O A258777 1,2 %A A258777 _Matthieu Pluntz_, Jun 09 2015