This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258786 #10 Jun 16 2015 14:19:56 %S A258786 5,8,41,56,64,358,614,946,1092,1382,1683,2430,2683,2734,2834,2945, %T A258786 3045,3067,3602,4056,4286,5186,5784,6874,7251,8104,8546,9264,12881, %U A258786 14028,14384,15258,17386,21103,22044,23331,24434,24603,25346,26420,26822,26845,27024,27232 %N A258786 Numbers n whose sum of anti-divisors is a permutation of their digits. %C A258786 A073930 is a subset of this sequence. %H A258786 Paolo P. Lava, <a href="/A258786/b258786.txt">Table of n, a(n) for n = 1..200</a> %e A258786 Anti-divisors of 5 are 2, 3 whose sum is 5. %e A258786 Anti-divisors of 41 are 2, 3, 9, 27 whose sum is 41. %e A258786 Anti-divisors of 64 are 3, 43 whose sum is 46 that is a permutation of the digit of 64. %p A258786 with(numtheory):P:=proc(q) local a,b,j,k,ok,n,p; %p A258786 for n from 1 to q do k:=0; j:=n; %p A258786 while j mod 2 <> 1 do k:=k+1; j:=j/2; od; %p A258786 a:=sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2; %p A258786 if ilog10(n)=ilog10(a) then j:=sort(convert(n,base,10)); a:=sort(convert(a,base,10)); ok:=1; %p A258786 for k from 1 to nops(a) do if j[k]<>a[k] then ok:=0; break; %p A258786 fi; od; if ok=1 then print(n); fi; fi; od; end: P(10^9); %t A258786 ad[n_] := Cases[Range[2, n - 1], _?(Abs[Mod[n, #] - #/2] < 1 &)]; Select[Range@ 5000, SameQ[DigitCount@ #, DigitCount[Total[ad@ #]]] &] (* _Michael De Vlieger_, Jun 10 2015 *) %o A258786 (Python) %o A258786 from sympy.ntheory.factor_ import antidivisors %o A258786 A258786_list = [n for n in range(1,10**5) if sorted(str(n)) == sorted(str(sum(antidivisors(n))))] # _Chai Wah Wu_, Jun 11 2015 %Y A258786 Cf. A066417, A073930, A114065, A115920, A115921, A175795, A225902. %K A258786 nonn,base %O A258786 1,1 %A A258786 _Paolo P. Lava_, Jun 10 2015