This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258787 #15 May 04 2024 14:55:40 %S A258787 5,8,17,7,26,449,30,18,197,557,3,9,118,1207,19601,22,146,19,361,8201, %T A258787 132857,38,40,224,249,4625,296449,4486949,54,28,68,99,4033,4625, %U A258787 296449,126664001,42,130,28,118,557,8201,997757,24800401,2363321449,14,41,374,1745,901,46826,217682,9312157,758427193,5229752849 %N A258787 Triangle read by rows: T(n, k) = smallest base b > 1 such that p = prime(n) is the k-th base-b Wieferich prime for k = 1, 2, 3, ..., n. %e A258787 T(4, 3) = 197, because 197 is the smallest base b such that p = prime(4) = 7 is the 3rd base-b Wieferich prime. %e A258787 Triangle T(n, k) starts: %e A258787 5; %e A258787 8, 17; %e A258787 7, 26, 449; %e A258787 30, 18, 197, 557; %e A258787 3, 9, 118, 1207, 19601; %e A258787 22, 146, 19, 361, 8201, 132857; %e A258787 38, 40, 224, 249, 4625, 296449, 4486949; %e A258787 54, 28, 68, 99, 4033, 4625, 296449, 126664001; %e A258787 42, 130, 28, 118, 557, 8201, 997757, 24800401, 2363321449; %o A258787 (PARI) nextwiefbase(n, a) = a++; while(Mod(a, n^2)^(n-1)!=1, a++); a %o A258787 wiefrank(n, a) = i=0; forprime(p=1, n, if(Mod(a, p^2)^(p-1)==1, i++)); i %o A258787 trianglerows(n) = i=1; while(i <= n, p=prime(i); for(k=1, i, b=2; while(wiefrank(p, b)!=k, b=nextwiefbase(p, b)); print1(b, ", ")); print(""); i++) %o A258787 trianglerows(9) \\ print first nine rows of the triangle %Y A258787 Cf. A256236 (diagonal). A286816. %K A258787 nonn,tabl %O A258787 1,1 %A A258787 _Felix Fröhlich_, Jun 10 2015 %E A258787 More terms from _Max Alekseyev_, Oct 14 2023