cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258795 a(n) = [x^n] Product_{k=1..n} 1/(x^(3*k)*(1-x^k)^2).

This page as a plain text file.
%I A258795 #5 Jun 11 2015 06:24:35
%S A258795 1,5,112,3216,104112,3661517,136580866,5323418568,214685704402,
%T A258795 8897404908604,377068336570902,16280261371485594,714081427614467553,
%U A258795 31747177836376617322,1428084942303149795972,64902413675181889657064,2976483322906106920966911
%N A258795 a(n) = [x^n] Product_{k=1..n} 1/(x^(3*k)*(1-x^k)^2).
%F A258795 a(n) ~ c * d^n / n^(5/2), where d = 53.0676066669703028123492951828168330443393201750491213178019371417684... = r^5/(r-1)^2, where r is the root of the equation polylog(2, 1-r) + (5*log(r)^2)/4 = 0, c = 0.983501005499107... .
%t A258795 Table[SeriesCoefficient[1/Product[x^(3*k)*(1-x^k)^2, {k, 1, n}], {x, 0, n}], {n, 0, 20}]
%t A258795 Table[SeriesCoefficient[1/Product[1-x^k, {k, 1, n}]^2, {x, 0, n*(3*n+5)/2}], {n, 0, 20}]
%Y A258795 Cf. A258788, A258790, A258791, A258792, A258793, A258794, A258796.
%K A258795 nonn
%O A258795 0,2
%A A258795 _Vaclav Kotesovec_, Jun 10 2015