cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258796 a(n) = [x^n] Product_{k=1..n} 1/(x^(3*k)*(1-x^k)^3).

This page as a plain text file.
%I A258796 #5 Jun 11 2015 06:24:27
%S A258796 1,15,882,67385,5938518,575782833,59765085601,6529604684991,
%T A258796 742474127495175,87176531917206953,10508492822243329854,
%U A258796 1294860745291809207237,162553748258042032103013,20735748733960087597815855,2682101373558320853655174803
%N A258796 a(n) = [x^n] Product_{k=1..n} 1/(x^(3*k)*(1-x^k)^3).
%F A258796 a(n) ~ c * d^n / n^3, where d = 157.540286488430979726276374519534734829527107090287337321136938826336... = r^6/(r-1)^3, where r is the root of the equation polylog(2, 1-r) + log(r)^2 = 0, c = 1.797864597437050667... .
%t A258796 Table[SeriesCoefficient[1/Product[x^(3*k)*(1-x^k)^3, {k, 1, n}], {x, 0, n}], {n, 0, 20}]
%t A258796 Table[SeriesCoefficient[1/Product[1-x^k, {k, 1, n}]^3, {x, 0, n*(3*n+5)/2}], {n, 0, 20}]
%Y A258796 Cf. A258788, A258790, A258792, A258794, A258795.
%K A258796 nonn
%O A258796 0,2
%A A258796 _Vaclav Kotesovec_, Jun 10 2015