This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258797 #18 Jul 14 2025 17:08:06 %S A258797 1,1,2,6,16,51,166,554,1896,6595,23212,82582,296393,1071738,3900696, %T A258797 14278074,52526972,194108087,720197524,2681854490,10019539112, %U A258797 37545876368,141080872362,531457445806,2006678785762,7593123695669,28789152013570,109356019134584 %N A258797 a(n) = [x^n] Product_{k=1..n} (1+x^k)^2 / x^k. %C A258797 a(n) is half the number of subsets of {-n..n} whose sum is n. - _Ilya Gutkovskiy_, Jul 09 2025 %H A258797 Alois P. Heinz, <a href="/A258797/b258797.txt">Table of n, a(n) for n = 0..555</a> %F A258797 a(n) ~ sqrt(3) * 4^n / (sqrt(Pi) * n^(3/2)). %p A258797 b:= proc(n, s) option remember; `if`(n*(n+1)/2<s, 0, `if`(n=0, 1, %p A258797 add(`if`(j=0, 2, 1)*b(n-1, abs(s+j*n)), j=-1..1))) %p A258797 end: %p A258797 a:= n-> b(n$2): %p A258797 seq(a(n), n=0..27); # _Alois P. Heinz_, Jul 14 2025 %t A258797 Table[SeriesCoefficient[Product[(1+x^k)^2/x^k, {k, 1, n}], {x, 0, n}], {n, 0, 30}] %t A258797 Table[SeriesCoefficient[Product[1+x^k, {k, 1, n}]^2, {x, 0, n*(n+3)/2}], {n, 0, 30}] %Y A258797 Cf. A022567, A047653, A258798, A258799. %K A258797 nonn %O A258797 0,3 %A A258797 _Vaclav Kotesovec_, Jun 10 2015