cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258820 Reversed rows of A178252 presented as diagonals of an irregular triangle.

This page as a plain text file.
%I A258820 #55 Apr 11 2016 10:21:35
%S A258820 1,1,1,1,1,1,1,3,1,1,2,1,1,5,2,1,1,3,10,1,1,7,5,5,1,1,4,7,5,1,1,9,28,
%T A258820 35,3,1,1,5,12,14,7,1,1,11,15,21,14,7,1,1,6,55,30,126,28,1,1,13,22,
%U A258820 165,42,21,4,1
%N A258820 Reversed rows of A178252 presented as diagonals of an irregular triangle.
%C A258820 The diagonals of T are the reversed rows of A178252. E.g., the fifth diagonal of T is (1,2,2,1,1) from the example below, which is the fifth reversed row of A178252.
%C A258820 Factoring out the greatest common divisor (gcd) of the coefficients of the sub-polynomials in the indeterminate q of the polynomials in s presented on p. 12 of the Alexeev et al. link and then evaluating the sub-polynomials at q=1 gives the first nine rows of T given in the example below. E.g., for k=6 (the seventh row), q*s^6 + (6*q + 9*q^2) s^4 + (15*q + 15*q^2) s^2 + 5  = q*s^6 + 3*(2*q + 3*q^2)*s^4 + 15*(q + q^2)*s^2 + 5 generates (1,2+3,1+1,1)=(1,5,2,1).
%C A258820 The row length sequence of this irregular triangle is A008619(n) = 1 + floor(n/2). - _Wolfdieter Lang_, Aug 25 2015
%H A258820 N. Alexeev, J. Andersen, R. Penner, P. Zograf, <a href="http://arxiv.org/abs/1307.0967">Enumeration of chord diagrams on many intervals and their non-orientable analogs</a>, arXiv:1307.0967 [math.CO], 2013-2014.
%F A258820 T(n,k) =  A178252(n-k,n-2k) = A055151(n,k) / A161642(n,k) = A007318(n,2k) * A000108(k) / A161642(n,k) = n! / [(n-2k)! k! (k+1)! A161642(n,k)] =  A003989(n-k+1,k+1) * (n-k)! / [ (n-2k)! (k+1)! ], where A003989(j,k) = gcd(j,k).
%e A258820 The irregular triangle T(n,k) starts
%e A258820 n\k  0 1  2  3 4 5 ...
%e A258820 0:   1
%e A258820 1:   1
%e A258820 2:   1 1
%e A258820 3:   1 1
%e A258820 4:   1 3  1
%e A258820 5:   1 2  1
%e A258820 6:   1 5  2  1
%e A258820 7:   1 3 10  1
%e A258820 8:   1 7  5  5 1
%e A258820 9:   1 4  7  5 1
%e A258820 10:  1 9 28 35 3 1
%e A258820 ... reformatted. - _Wolfdieter Lang_, Aug 25 2015
%t A258820 max = 15; coes = Table[ PadRight[ CoefficientList[ BernoulliB[n, x], x], max], {n, 0, max-1}]; inv = Inverse[coes] // Numerator; t[n_, k_] := inv[[n, k]]; t[n_, k_] /; k == n+1 = 1; Table[t[n-k+1, k], {n, 2, max+1}, {k, 2, Floor[n/2]+1}] // Flatten (* _Jean-François Alcover_, Jul 22 2015 *)
%Y A258820 Cf. A050169, A161642, A055151, A088617, A178252, A107711, A165661, A003989, A008619.
%K A258820 nonn,tabf,easy
%O A258820 0,8
%A A258820 _Tom Copeland_, Jun 18 2015