This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258829 #32 Oct 25 2018 14:49:48 %S A258829 1,0,1,0,1,1,0,2,2,1,0,5,11,3,1,0,16,38,28,4,1,0,61,263,130,62,5,1,0, %T A258829 272,1260,1263,340,129,6,1,0,1385,10871,8090,4734,819,261,7,1,0,7936, %U A258829 66576,88101,33855,16066,1890,522,8,1,0,50521,694599,724189,495371,127538,52022,4260,1040,9,1 %N A258829 Number T(n,k) of permutations p of [n] such that the up-down signature of 0,p has nonnegative partial sums with a maximal value of k; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %H A258829 Alois P. Heinz, <a href="/A258829/b258829.txt">Rows n = 0..140, flattened</a> %F A258829 T(n,k) = A262163(n,k) - A262163(n,k-1) for k>0, T(n,0) = A262163(n,0). %e A258829 p = 1432 is counted by T(4,2) because the up-down signature of 0,p = 01432 is 1,1,-1,-1 with partial sums 1,2,1,0. %e A258829 q = 4321 is not counted by any T(4,k) because the up-down signature of 0,q = 04321 is 1,-1,-1,-1 with partial sums 1,0,-1,-2. %e A258829 T(4,1) = 5: 2143, 3142, 3241, 4132, 4231. %e A258829 T(4,2) = 11: 1324, 1423, 1432, 2134, 2314, 2413, 2431, 3124, 3412, 3421, 4123. %e A258829 T(4,3) = 3: 1243, 1342, 2341. %e A258829 T(4,4) = 1: 1234. %e A258829 Triangle T(n,k) begins: %e A258829 1; %e A258829 0, 1; %e A258829 0, 1, 1; %e A258829 0, 2, 2, 1; %e A258829 0, 5, 11, 3, 1; %e A258829 0, 16, 38, 28, 4, 1; %e A258829 0, 61, 263, 130, 62, 5, 1; %e A258829 0, 272, 1260, 1263, 340, 129, 6, 1; %e A258829 0, 1385, 10871, 8090, 4734, 819, 261, 7, 1; %p A258829 b:= proc(u, o, c, k) option remember; %p A258829 `if`(c<0 or c>k, 0, `if`(u+o=0, 1, %p A258829 add(b(u-j, o-1+j, c+1, k), j=1..u)+ %p A258829 add(b(u+j-1, o-j, c-1, k), j=1..o))) %p A258829 end: %p A258829 A:= (n, k)-> b(n, 0$2, k): %p A258829 T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)): %p A258829 seq(seq(T(n, k), k=0..n), n=0..12); %t A258829 b[u_, o_, c_, k_] := b[u, o, c, k] = If[c < 0 || c > k, 0, If[u + o == 0, 1, Sum[b[u - j, o - 1 + j, c + 1, k], {j, 1, u}] + Sum[b[u + j - 1, o - j, c - 1, k], {j, 1, o}]]]; %t A258829 A[n_, k_] := b[n, 0, 0, k]; %t A258829 T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]]; %t A258829 Table[T[n, k], {n, 0, 12}, { k, 0, n}] // Flatten (* _Jean-François Alcover_, Jun 09 2018, after _Alois P. Heinz_ *) %Y A258829 Columns k=0-10 give: A000007, A000111 for n>0, A259213, A316390, A316391, A316392, A316393, A316394, A316395, A316396, A316397. %Y A258829 Row sums give A258830. %Y A258829 T(2n,n) gives A266947. %Y A258829 Cf. A262124, A262125, A262163, A291722, A316292, A316293. %K A258829 nonn,tabl %O A258829 0,8 %A A258829 _Alois P. Heinz_, Jun 11 2015