A258842 Quasi-Carmichael numbers to exactly eight bases.
182293, 6536953, 13116283, 23337661, 55898473, 56624329, 66112261, 66355291, 66846751, 67239919, 75289033, 76222261, 93331321, 97594157, 110397013, 115175383, 146385797, 147111617, 157333573, 158029141, 159289241, 163825601, 181950817, 187826449, 207820831
Offset: 1
Keywords
Examples
a(1) = 182293 because this is the first squarefree composite number n such that exactly eight integers except 0 exist such that for every prime factor p of n applies that p+b divides n+b (-419, -418, -413, -412, -405, -403, -373, -349): 182293=421*433 and 2, 14 both divide 181874 and 3, 15 both divide 181875 and 8, 20 both divide 181880 and 9, 21 both divide 181881 and 16, 28 both divide 181888 and 18, 30 both divide 181890 and 48, 60 both divide 181920 and 72, 84 both divide 181944.
Links
- Hiroaki Yamanouchi, Table of n, a(n) for n = 1..3383
Crossrefs
Programs
-
PARI
for(n=2, 1000000, if(!isprime(n), if(issquarefree(n), f=factor(n); k=0; for(b=-(f[1, 1]-1), n, c=0; for(i=1, #f[, 1], if((n+b)%(f[i, 1]+b)>0, c++)); if(c==0, if(!b==0, k++))); if(k==8, print1(n, ", ")))))
Extensions
a(4)-a(25) from Hiroaki Yamanouchi, Sep 26 2015
Comments