This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258850 #26 Oct 24 2018 16:23:18 %S A258850 0,0,1,0,0,2,0,0,1,3,0,0,0,2,4,0,0,0,1,4,5,0,0,0,0,4,3,6,0,0,0,0,4,2, %T A258850 7,7,0,0,0,0,4,1,4,4,8,0,0,0,0,4,0,4,4,12,9,0,0,0,0,4,0,4,4,20,12,10, %U A258850 0,0,0,0,4,0,4,4,32,20,11,11,0,0,0,0,4,0,4,4,80,32,5,5,12 %N A258850 A(n,k) = k-th pi-based arithmetic derivative of n; square array A(n,k), n>=0, k>=0, read by antidiagonals. %H A258850 Alois P. Heinz, <a href="/A258850/b258850.txt">Antidiagonals n = 0..31, flattened</a> %F A258850 A(n,k) = A258851^k(n). %F A258850 A(A259016(n,k),k) = n. %F A258850 A(A258975(n),n) = 1. %e A258850 Square array A(n,k) begins: %e A258850 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... %e A258850 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... %e A258850 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, ... %e A258850 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, ... %e A258850 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, ... %e A258850 5, 3, 2, 1, 0, 0, 0, 0, 0, 0, ... %e A258850 6, 7, 4, 4, 4, 4, 4, 4, 4, 4, ... %e A258850 7, 4, 4, 4, 4, 4, 4, 4, 4, 4, ... %e A258850 8, 12, 20, 32, 80, 208, 512, 2304, 12288, 81920, ... %e A258850 9, 12, 20, 32, 80, 208, 512, 2304, 12288, 81920, ... %p A258850 with(numtheory): %p A258850 d:= n-> n*add(i[2]*pi(i[1])/i[1], i=ifactors(n)[2]): %p A258850 A:= proc(n, k) option remember; `if`(k=0, n, d(A(n, k-1))) end: %p A258850 seq(seq(A(n, h-n), n=0..h), h=0..14); %t A258850 d[n_] := n*Total[Last[#]*PrimePi[First[#]]/First[#]& /@ FactorInteger[n]]; d[0] = 0; %t A258850 A[n_, k_] := A[n, k] = If[k == 0, n, d[A[n, k-1]]]; %t A258850 Table[Table[A[n, h-n], {n, 0, h}], {h, 0, 14}] // Flatten (* _Jean-François Alcover_, Apr 24 2016, adapted from Maple *) %Y A258850 Columns k=0-10 give: A001477, A258851, A258852, A258853, A258854, A258855, A258856, A258857, A258858, A258859, A258860. %Y A258850 Rows n=0,1,4,8 give: A000004, A000007, A010709, A258848. %Y A258850 Antidiagonal sums give A258847. %Y A258850 Main diagonal gives A258849. %Y A258850 Cf. A000720, A258975, A259016. %K A258850 nonn,tabl %O A258850 0,6 %A A258850 _Alois P. Heinz_, Jun 12 2015