This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258870 #21 Aug 30 2024 14:30:26 %S A258870 2,1,6,7,3,6,0,6,2,5,8,8,2,2,6,1,9,5,1,9,0,0,2,3,1,3,6,6,8,4,7,0,2,7, %T A258870 4,4,1,8,2,1,6,1,3,1,7,2,9,6,3,4,9,8,5,0,9,7,5,6,2,3,2,5,9,9,8,8,2,2, %U A258870 1,3,7,8,7,1,9,4,8,5,3,8,1,6,7,7,0,4,2,6,8,1,2,3,6,4,1,5,4,4,4,7,3,7,9,5,0,3,6,4,6,4,3,4,5,8,1,4,2,9,6 %N A258870 Decimal expansion of Product_{n>=1} (1+1/n^4). %C A258870 For m>0, Product_{k>=1} (1 + m/k^4) = (cosh(sqrt(2)*Pi*m^(1/4)) - cos(sqrt(2)*Pi*m^(1/4))) / (2*Pi^2*sqrt(m)). - _Vaclav Kotesovec_, Aug 30 2024 %F A258870 Equals (cosh(sqrt(2)*Pi)-cos(sqrt(2)*Pi))/(2*Pi^2). %F A258870 Equals exp(Sum_{j>=1} (-(-1)^j*Zeta(4*j)/j)). - _Vaclav Kotesovec_, Mar 28 2019 %e A258870 2.16736062588226195190023136684702744182161317296349850975623259988... %p A258870 evalf((cosh(sqrt(2)*Pi)-cos(sqrt(2)*Pi))/(2*Pi^2),120); %t A258870 RealDigits[(Cosh[Sqrt[2]*Pi]-Cos[Sqrt[2]*Pi])/(2*Pi^2),10,120][[1]] %o A258870 (PARI) exp(sumalt(j=1, -(-1)^j*zeta(4*j)/j)) \\ _Vaclav Kotesovec_, Dec 15 2020 %Y A258870 Cf. A109219, A175615, A175617, A175619, A156648, A073017, A258871, A334411. %K A258870 nonn,cons %O A258870 1,1 %A A258870 _Vaclav Kotesovec_, Jun 13 2015