cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258871 Decimal expansion of Product_{n>=1} (1+1/n^6).

Original entry on oeis.org

2, 0, 3, 4, 7, 4, 0, 8, 3, 5, 0, 0, 9, 4, 2, 9, 0, 6, 3, 5, 8, 6, 8, 2, 0, 8, 0, 9, 6, 4, 2, 8, 5, 0, 8, 9, 7, 7, 1, 0, 9, 0, 1, 0, 0, 6, 2, 3, 9, 2, 5, 4, 6, 9, 0, 5, 5, 7, 5, 3, 9, 4, 8, 0, 4, 5, 2, 9, 8, 4, 1, 2, 0, 1, 9, 1, 5, 2, 5, 8, 4, 9, 1, 3, 5, 3, 5, 9, 8, 1, 5, 4, 9, 6, 6, 7, 0, 7, 6, 8, 6, 7, 8, 1, 3
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 13 2015

Keywords

Comments

From Vaclav Kotesovec, Aug 30 2024: (Start)
For m>0, Product_{k>=1} (1 + m/k^6) = (cosh(Pi*m^(1/6)) - cos(sqrt(3)*Pi*m^(1/6))) * sinh(Pi*m^(1/6)) / (2*Pi^3*sqrt(m)).
If m tends to infinity, Product_{k>=1} (1 + m/k^6) ~ exp(2*Pi*m^(1/6)) / (8*Pi^3*sqrt(m)). (End)

Examples

			2.03474083500942906358682080964285089771090100623925469055753948...
		

Crossrefs

Programs

  • Maple
    evalf((cosh(Pi)-cos(sqrt(3)*Pi))*sinh(Pi)/(2*Pi^3), 120);
  • Mathematica
    RealDigits[(Cosh[Pi]-Cos[Sqrt[3]*Pi])*Sinh[Pi]/(2*Pi^3),10,120][[1]]
  • PARI
    prodnumrat(1+x^-6, 1) \\ Charles R Greathouse IV, Feb 04 2025

Formula

Equals (cosh(Pi)-cos(sqrt(3)*Pi))*sinh(Pi)/(2*Pi^3).
Equals exp(Sum_{j>=1} (-(-1)^j*Zeta(6*j)/j)). - Vaclav Kotesovec, Mar 28 2019