This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258880 #26 Jul 25 2018 12:17:21 %S A258880 1,6,540,184680,157600080,270419925600,816984611467200, %T A258880 3971317527112003200,29097143353353192480000, %U A258880 305823675529741700675520000,4435486895868663971869188480000,86036822683997062842122964537600000,2175352015640142857526698650779456000000 %N A258880 E.g.f. satisfies: A(x) = Integral 1 + A(x)^3 dx. %C A258880 Note: Sum_{n>=0} (-1)^n*x^(3*n+1)/(3*n+1) = log( (1+x)/(1-x^3)^(1/3) )/2 + Pi*sqrt(3)/18 - atan( (1-2*x)*sqrt(3)/3 )*sqrt(3)/3. %H A258880 Vaclav Kotesovec, <a href="/A258880/b258880.txt">Table of n, a(n) for n = 0..150</a> %H A258880 Guo-Niu Han, Jing-Yi Liu, <a href="https://arxiv.org/abs/1707.08882">Divisibility properties of the tangent numbers and its generalizations</a>, arXiv:1707.08882 [math.CO], 2017. See Table for k = 3 p. 8. %F A258880 E.g.f.: Series_Reversion( Integral 1/(1+x^3) dx ). %F A258880 E.g.f.: Series_Reversion( Sum_{n>=0} (-1)^n * x^(3*n+1)/(3*n+1) ). %F A258880 a(n) ~ 3^(15*n/2 + 17/4) * n^(3*n+1) / (exp(3*n) * (2*Pi)^(3*n+3/2)). - _Vaclav Kotesovec_, Jun 15 2015 %e A258880 E.g.f.: A(x) = x + 6*x^4/4! + 540*x^7/7! + 184680*x^10/10! + 157600080*x^13/13! + 270419925600*x^16/16! +... %e A258880 where Series_Reversion(A(x)) = x - x^4/4 + x^7/7 - x^10/10 + x^13/13 - x^16/16 +... %t A258880 terms = 13; %t A258880 A[_] = 0; %t A258880 Do[A[x_] = Integrate[1 + A[x]^3, x] + O[x]^k // Normal, {k, 1, 3 terms}]; %t A258880 DeleteCases[CoefficientList[A[x], x] Range[0, 3 terms - 2]!, 0] (* _Jean-François Alcover_, Jul 25 2018 *) %o A258880 (PARI) {a(n) = local(A=x); A = serreverse( sum(m=0,n, (-1)^m * x^(3*m+1)/(3*m+1) ) +O(x^(3*n+2)) ); (3*n+1)!*polcoeff(A,3*n+1)} %o A258880 for(n=0,20,print1(a(n),", ")) %o A258880 (PARI) /* E.g.f. A(x) = Integral 1 + A(x)^3 dx.: */ %o A258880 {a(n) = local(A=x); for(i=1,n+1, A = intformal( 1 + A^3 + O(x^(3*n+2)) )); (3*n+1)!*polcoeff(A,3*n+1)} %o A258880 for(n=0,20,print1(a(n),", ")) %Y A258880 Cf. A000182, A000831, A258878, A258901, A258925, A258927, A259112, A259113, A258969. %K A258880 nonn %O A258880 0,2 %A A258880 _Paul D. Hanna_, Jun 13 2015