A258882 Primitive weird numbers of the form 2^k*p*q with k > 0 and where p < q are odd primes.
70, 836, 7192, 7912, 9272, 10792, 17272, 73616, 83312, 113072, 519712, 539744, 555616, 682592, 786208, 1188256, 1229152, 1901728, 2081824, 2189024, 3963968, 4128448, 4145216, 4486208, 4559552, 4632896, 4960448, 5440192, 5568448, 6460864, 6621632, 7354304, 7470272, 8000704, 8134208
Offset: 1
Keywords
Examples
a(1) = A002975(1) = 70 = 2*5*7. a(2) = A002975(2) = 836 = 2^2*11*19. A002975(3) = 4030 = 2*5*13*31 is not in this sequence since it is not of the required form. The same is true for A002975(4) = 5830. a(3) = A002975(5) = 7192 = 2^3*29*31, etc. A002975(179) = 2319548096 = 2^6 * 137^2 * 1931 is the first term of A002975 with only two odd prime divisors, but not of the required form. - _M. F. Hasler_, Nov 20 2018
References
- S. Kravitz, A search for large weird numbers. J. Recreational Math. 9 (1976), 82-85 (1977). Zbl 0365.10003
Links
- Douglas E. Iannucci and Robert G. Wilson v, Table of n, a(n) for n = 1..15384, updated Dec 06 2015; corrected by _M. F. Hasler_, Jul 16 2016
- R. Bagula et al., A very big weird number, Number Theory group on LinkedIn (web.archive.org snapshot; page no longer available). Dec. 2013
- Central Washington University, CWU Math Students Break World Record for Largest Weird Number [alternate article]
- Douglas E. Iannucci, On primitive weird numbers of the form 2^k*p*q, arXiv:1504.02761 [math.NT], 2015.
- Giuseppe Melfi, On the conditional infiniteness of primitive weird numbers, Journal of Number Theory, Vol. 147, Feb 2015, pp 508-514.
- Eric Weisstein's World of Mathematics, Weird Number.
- Wikipedia, Weird number
Crossrefs
Programs
-
Mathematica
(* copy the terms from A002975, assign them equal to 'lst' and then *) fQ[n_] := Block[{m = n}, While[ Mod[m, 2] == 0, m /= 2]; PrimeOmega@ m == 2]; Select[lst, fQ]
-
PARI
select(t->factor(t)[, 2][^1]=[1, 1]~, A002975) \\ Assuming that A002975 is defined as set or vector. - M. F. Hasler, Jul 11 2016
Extensions
Edited by M. F. Hasler, Jul 11 2016, Nov 20 2018
Comments