A258895 Decimal expansion of a constant related to A063902 and A258662.
4, 5, 2, 1, 0, 4, 2, 9, 9, 1, 8, 3, 4, 2, 0, 5, 2, 8, 8, 4, 1, 2, 8, 0, 8, 5, 5, 3, 6, 1, 0, 3, 2, 7, 9, 4, 0, 5, 5, 2, 5, 4, 5, 1, 8, 2, 2, 8, 1, 8, 5, 1, 3, 9, 4, 7, 3, 4, 7, 3, 1, 3, 3, 0, 6, 3, 5, 1, 4, 3, 3, 3, 8, 7, 5, 8, 9, 3, 8, 5, 2, 6, 5, 9, 1, 6, 5, 0, 7, 6, 0, 8, 9, 7, 5, 6, 0, 9, 3, 8, 8, 5, 6, 1, 8, 8
Offset: 0
Examples
0.4521042991834205288412808553610327940552545182281851394734731330635...
Programs
-
Maple
evalf(32*Pi / (GAMMA(1/6) * GAMMA(1/3))^2, 118); evalf(2^(17/3) * Pi^2 / (3 * GAMMA(1/3)^6), 118);
-
Mathematica
RealDigits[32*Pi/(Gamma[1/6]*Gamma[1/3])^2,10,120][[1]]
Formula
Equals limit n->infinity (A063902(n)/(n!)^2)^(1/n).
Equals 32*Pi / (Gamma(1/6) * Gamma(1/3))^2.
Equals 2^(17/3) * Pi^2 / (3 * Gamma(1/3)^6).