cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258895 Decimal expansion of a constant related to A063902 and A258662.

Original entry on oeis.org

4, 5, 2, 1, 0, 4, 2, 9, 9, 1, 8, 3, 4, 2, 0, 5, 2, 8, 8, 4, 1, 2, 8, 0, 8, 5, 5, 3, 6, 1, 0, 3, 2, 7, 9, 4, 0, 5, 5, 2, 5, 4, 5, 1, 8, 2, 2, 8, 1, 8, 5, 1, 3, 9, 4, 7, 3, 4, 7, 3, 1, 3, 3, 0, 6, 3, 5, 1, 4, 3, 3, 3, 8, 7, 5, 8, 9, 3, 8, 5, 2, 6, 5, 9, 1, 6, 5, 0, 7, 6, 0, 8, 9, 7, 5, 6, 0, 9, 3, 8, 8, 5, 6, 1, 8, 8
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 14 2015

Keywords

Examples

			0.4521042991834205288412808553610327940552545182281851394734731330635...
		

Crossrefs

Programs

  • Maple
    evalf(32*Pi / (GAMMA(1/6) * GAMMA(1/3))^2, 118);
    evalf(2^(17/3) * Pi^2 / (3 * GAMMA(1/3)^6), 118);
  • Mathematica
    RealDigits[32*Pi/(Gamma[1/6]*Gamma[1/3])^2,10,120][[1]]

Formula

Equals limit n->infinity (A063902(n)/(n!)^2)^(1/n).
Equals 32*Pi / (Gamma(1/6) * Gamma(1/3))^2.
Equals 2^(17/3) * Pi^2 / (3 * Gamma(1/3)^6).